0000000000015664
AUTHOR
T. Murakami
Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions atsNN=200GeV
We present a systematic study of charged-pion and kaon interferometry in Au + Au collisions at root s(NN) = 200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.
Medium Modification of Jet Fragmentation inAu+AuCollisions atsNN=200 GeVMeasured in Direct Photon-Hadron Correlations
The jet fragmentation function is measured with direct photon-hadron correlations in p + p and Au + Au collisions at root S-NN = 200 GeV. The P-T of the photon is an excellent approximation to the initial P-T of the jet and the ratio Z(T) = P-T(h)/P-T(gamma) is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au + Au collisions while a photon isolation cut is applied in p + p. I-AA, the ratio of hadron yield opposite the photon in Au + Au to that in p + p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high Z(T). The associated h…
The PHENIX Collaboration
Cross Section and Parity-Violating Spin Asymmetries ofW±Boson Production in Polarizedp+pCollisions ats=500 GeV
Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = 0.86(-0.14)(+0.30) and Ae(L)(e-) = 0.88(-0.71)(+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p + p collisions at a center-of-mass energy of root s = 500 GeV with the PHENIX detector at RHIC. These e(+/-) come mainly from the decay of W-+/- and Z(0) bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W-+/- to the light quarks. The observed electron and positron yields were used to estimate W-+/- boson production cross sections for the e(+/-) channels of sigma(pp -> W+X) X BR(W+ -> e(+) nu(e)) = 144.1 +/- 21.2(stat)(-10.3)(+3.4)(syst)…
Cross section forbb¯production via dielectrons ind+ Au collisions atsNN=200GeV
We report a measurement of e+e− pairs from semileptonic heavy-flavor decays in d+Au collisions at sNN−−−√=200 GeV. By exploring the mass and transverse-momentum dependence of the yield, the bottom decay contribution can be isolated from charm, and quantified by comparison to pythia and mc@nlo simulations. The resulting bb¯-production cross section is σdAubb¯=1.37±0.28(stat)±0.46(syst) mb, which is equivalent to a nucleon-nucleon cross section of σNNbb=3.4±0.8(stat)±1.1(syst)μb.
Υ(1S+2S+3S)production ind+Au andp+pcollisions atsNN=200GeV and cold-nuclear-matter effects
The three gamma states, gamma (1S + 2S + 3S), are measured in d + Au and p + p collisions at root s(NN) = 200 GeV and rapidities 1.2 < vertical bar y vertical bar < 2.2 by the PHENIX experiment at the Relativistic Heavy Ion Collider. Cross sections for the inclusive gamma (1S + 2S + 3S) production are obtained. The inclusive yields per binary collision for d + Au collisions relative to those in p + p collisions (R-dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [Eskola et al., J. High Energy Phys. 04 (2009) 065]…
Measurement ofΥ(1S+2S+3S)production inp+pand Au + Au collisions atsNN=200GeV
Measurements of bottomonium production in heavy-ion and p + p collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three states, (1S + 2S + 3S), was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au + Au and p + p collisions at root sNN = 200 GeV. The (1S + 2S + 3S) -> e(+)e(-) differential cross section at midrapidity was found to be B(ee)d sigma/dy = 108 +/- 38 (stat) +/- 15 (syst) +/- 11 (luminosity) pb in p + p collisions. The nuclear modification factor in the 30% most central Au + Au collisions indicates a suppression of the total. state yield relative to the extrapolation from p + p collision data. …
Cross section and transverse single-spin asymmetry ofηmesons inp↑+pcollisions ats=200 GeVat forward rapidity
We present a measurement of the cross section and transverse single-spin asymmetry (AN) for. mesons at large pseudorapidity from root s = 200 GeV p up arrow + p collisions. The measured cross section for 0.5 = 0.061 +/- 0.014. The results are consistent with prior transverse single-spin measurements of forward eta and pi(0) mesons at various energies in overlapping x(F) ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in p up arrow + p collisions.
Measurement of the relative yields of ψ(2S) to ψ(1S) mesons produced at forward and backward rapidity in p+p , p+Al , p+Au , and He3+Au collisions at sNN=200 GeV
The PHENIX Collaboration has measured the ratio of the yields of ψ(2S) to ψ(1S) mesons produced in p+p, p+Al, p+Au, and He3+Au collisions at sNN=200 GeV over the forward and backward rapidity intervals 1.2<|y|<2.2. We find that the ratio in p+p collisions is consistent with measurements at other collision energies. In collisions with nuclei, we find that in the forward (p-going or He3-going) direction, the relative yield of ψ(2S) mesons to ψ(1S) mesons is consistent with the value measured in p+p collisions. However, in the backward (nucleus-going) direction, the ψ(2S) meson is preferentially suppressed by a factor of ∼2. This suppression is attributed in some models to the breakup of the w…
Cold-Nuclear-Matter Effects on Heavy-Quark Production at Forward and Backward Rapidity ind+AuCollisions atsNN=200 GeV
The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6 GeV/c at forward and backward rapidity (1.4 < vertical bar y vertical bar < 2.0) in d + Au and p + p collisions at root s(NN) = 200 GeV. In central d + Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data a…
Heavy-quark production and elliptic flow in Au + Au collisions atsNN=62.4GeV
We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y|< 0.35) in Au+Au collisions at sNN−−−−√=62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1<peT<5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p+p reference in Au+Au 0%–20%, 20%–40%, and 40%–60% centralities at a comparable level. At this low beam energy this may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy …
Cold-Nuclear-Matter Effects on Heavy-Quark Production ind+AuCollisions atsNN=200 GeV
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt[S(NN)]=200 GeV in the transverse-momentum range 0.85 ≤ p(T)(e) ≤ 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R(dA) at 1.5<p(T)<5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p+p collisions, and shows that the mass-dependent Cronin enhancement observed at the Relativistic Heavy Ion Collider extends to the heavy D meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-…
Measurement of transverse single-spin asymmetries forJ/ψproduction in polarizedp+pcollisions ats=200 GeV
We report the first measurement of transverse single-spin asymmetries in J/psi production from transversely polarized p + p collisions at root s = 200 GeV with data taken by the PHENIX experiment in 2006 and 2008. The measurement was performed over the rapidity ranges 1.2 < vertical bar y vertical bar < 2.2 and vertical bar y vertical bar < 0.35 for transverse momenta up to 6 GeV/c. J/psi production at the Relativistic Heavy Ion Collider is dominated by processes involving initial-state gluons, and transverse single-spin asymmetries of the J/psi can provide access to gluon dynamics within the nucleon. Such asymmetries may also shed light on the long-standing question in QCD of the J/psi pro…
AGingaObservation of the X‐Ray Pulsar 4U 0352+30
4U 0352 + 30 (X Persei) is a low-luminosity binary X-ray pulsar with a pulse period of 835 s. We present timing and spectral analysis of a Ginga observation of X Persei from 1990 January 26 to January 29. The observation shows the peculiar spectral behavior of X Persei: the pulse-averaged hardness ratio exhibits a sharp hardening episode at phase minimum of the light curve. In order to explain the shape of the observed hardness ratio, we discuss the possible geometry of the emitting region. Simple models of fan emission from a hollow accretion column can reproduce the qualitative features of the observed light curve and hardness ratio.
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Centrald+AuCollisions atsNN=200 GeV
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of azimuthal dihadron correlations near midrapidity in d + Au collisions at root s(NN) = 200 GeV. These measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving central p + Pb collisions at root s(NN) = 5.02 TeV, which have indicated strong anisotropic long-range correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown. Various competing explanations include parton saturation and hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies in d + Au collisions at RHIC compared to those seen…
Cold Nuclear Matter Effects onJ/ψYields as a Function of Rapidity and Nuclear Geometry ind+ACollisions atsNN=200 GeV
We present measurements of J/psi yields in d + Au collisions at root S-NN = 200 GeV recorded by the PHENIX experiment and compare them with yields in p + p collisions at the same energy per nucleon-nucleon collision. The measurements cover a large kinematic range in J/psi rapidity (-2.2 < y < 2.4) with high statistical precision and are compared with two theoretical models: one with nuclear shadowing combined with final state breakup and one with coherent gluon saturation effects. In order to remove model dependent systematic uncertainties we also compare the data to a simple geometric model. The forward rapidity data are inconsistent with nuclear modifications that are linear or exponentia…
Centrality categorization forRp(d)+Ain high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool for studying a wide array of physics effects, including modifications of parton distribution functions in nuclei, gluon saturation, and color neutralization and hadronization in a nuclear environment, among others. All of these effects are expected to have a significant dependence on the size of the nuclear target and the impact parameter of the collision, also known as the collision centrality. In this article, we detail a method for determining centrality classes in p(d) + A collisions via cuts on the multiplicity at backward rapidity (i.e., the nucleus-going direction) and for determining systematic uncertainti…
Measurement of ϕ -meson production at forward rapidity in p+p collisions at s=510 GeV and its energy dependence from s=200 GeV to 7 TeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section of φ(1020)-meson production at forward rapidity in p+p collisions at s=510 GeV via the dimuon decay channel. The partial cross section in the rapidity and pT ranges 1.2
Production ofωmesons inp+p,d+ Au, Cu + Cu, and Au + Au collisions atsNN=200GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured omega meson production via leptonic and hadronic decay channels in p + p, d + Au, Cu+ Cu, and Au + Au collisions at root s(NN) = 200 GeV. The invariant transverse momentum spectra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu Cu and Au + Au collisions show that. production has a suppression pattern at high transverse momentum, similar to that of pi(0) and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R-AA, are consistent in Cu + Cu and Au + Au collisions at similar numbers of participan…
Measurements of e+e− pairs from open heavy flavor in p+p and d+A collisions at sNN=200 GeV
We report a measurement of e+e− pairs from semileptonic heavy-flavor decays in p+p collisions at sNN=200 GeV. The e+e− pair yield from bb¯ and cc¯ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and pT. We used three different event generators, pythia, mc@nlo, and powheg, to simulate the e+e− spectra from cc¯ and bb¯ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to 4π, significant differences are observed for the total cross section. These difference are less pronounced for bb¯ than for cc¯. The same model dependence was observed in alr…
Multiparticle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au + Au collisions at sNN=200 GeV
We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity 1<|η|<3 in Au + Au collisions at sNN=200 GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients v2{2},v2{4},v2{6}, and v2{8}, and triangular flow coefficients v3{2} and v3{4}. Using the small-variance limit, we estimate the mean and variance of the event-by-event v2 distribution from v2{2} and v2{4}. In a complementary analysis, we also use a folding procedure to study the distributions of v2 and v3 directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their …
Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and He3 + Au collisions at sNN=200 GeV
We present measurements of the transverse- momentum dependence of elliptic flow v2 for identified pions and (anti)protons at midrapidity (|η|<0.35), in 0%–5% central p+Au and He3+Au collisions at sNN=200 GeV. When taken together with previously published measurements in d+Au collisions at sNN=200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of v2(pT) in d+Au and He3+Au collisions, just as in large nucleus-nucleus (A+A) collisions, and a smaller splitting in p+Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low pT (<1.5GeV/c), but …
Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d + Au collisions at √sNN = 200 GeV.
The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1p(T)6 GeV/c at forward and backward rapidity (1.4|y|2.0) in d+Au and p + p collisions at √sNN = 200 GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that t…
Direct photon production ind+Au collisions atsNN=200GeV
Direct photons have been measured in root s(NN) = 200 GeV d + Au collisions at midrapidity. A wide p(T) range is covered by measurements of nearly real virtual photons (1 < p(T) < 6 GeV/c) and real photons (5 < p(T) < 16 GeV/c). The invariant yield of the direct photons in d + Au collisions over the scaled p + p cross section is consistent with unity. Theoretical calculations assuming standard cold-nuclear-matter effects describe the data well for the entire p(T) range. This indicates that the large enhancement of direct photons observed in Au + Au collisions for 1.0 < p(T) < 2.5 GeV/c is attributable to a source other than the initial-state nuclear effects.
Evolution ofπ0Suppression inAu+AuCollisions fromsNN=39to 200 GeV
Neutral-pion pi(0) spectra were measured at midrapidity (vertical bar y vertical bar < 0.35) in Au + Au collisions at root s(NN) = 39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 < p(T) < 10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding spectra for p + p collisions. The nuclear modification factors (RAA) show significant suppression, with a distinct energy, centrality, and p(T) dependence. Above p(T) = 7 GeV/c, R-AA is similar for root sNN = 62.4 and 200 GeV at …
Polarization and cross section of midrapidity J/ψ production in p+p collisions at s=510 GeV
The PHENIX experiment has measured the spin alignment for inclusive J/ψ→e+e- decays in proton-proton collisions at s=510 GeV at midrapidity. The angular distributions have been measured in three different polarization frames, and the three decay angular coefficients have been extracted in a full two-dimensional analysis. Previously, PHENIX saw large longitudinal net polarization at forward rapidity at the same collision energy. This analysis at midrapidity, complementary to the previous PHENIX results, sees no sizable polarization in the measured transverse momentum range of 0.0
Nuclear Modification ofψ′,χc, andJ/ψProduction ind+AuCollisions atsNN=200 GeV
We present results for three charmonia states (psi' chi(c), and J/ psi) in d + Au collisions at vertical bar y vertical bar < 0.35 and root s(NN) = 200 GeV. We find that the modification of the psi' yield relative to that of the J/ psi scales approximately with charged particle multiplicity at midrapidity across p + A, d + Au, and A + A results from the Super Proton Synchrotron and the Relativistic Heavy Ion Collider. In large-impact-parameter collisions we observe a similar suppression for the psi' and J/ psi, while in small-impact-parameter collisions the more weakly bound psi' is more strongly suppressed. Owing to the short time spent traversing the Au nucleus, the larger psi' suppressio…
Inclusive cross section and double-helicity asymmetry forπ0production at midrapidity inp+pcollisions ats=510 GeV
PHENIX measurements are presented for the cross section and double-helicity asymmetry (A(LL)) in inclusive pi(0) production at midrapidity from p + p collisions at root s = 510 GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The pi(0)A(LL) results follow an increasingly positive asymmetry trend with p(T) and root s with respect to the predictions and are …
Inclusive double-helicity asymmetries in neutral-pion and eta-meson production inp→+p→collisions ats=200 GeV
Results are presented from data recorded in 2009 by the PHENIX experiment at the Relativistic Heavy Ion Collider for the double-longitudinal spin asymmetry, A(LL), for pi(0) and eta production in root s = 200 GeV polarized p + p collisions. Comparison of the pi(0) results with different theory expectations based on fits of other published data showed a preference for small positive values of gluon polarization, Delta G, in the proton in the probed Bjorken x range. The effect of adding the new 2009 pi(0) data to a recent global analysis of polarized scattering data is also shown, resulting in a best fit Delta G(DSSV)([0.05,0.2]) = 0.06(-0.15)(+0.11) in the range 0.05 < x < 0.2, with the unce…
Suppression of Back-to-Back Hadron Pairs at Forward Rapidity ind+AuCollisions atsNN=200 GeV
Back-to-back hadron pair yields in d + Au and p + p collisions at root S-NN = 200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity vertical bar eta vertical bar < 0: 35 and the associated hadron at forward rapidity (deuteron direction, 3.0< eta < 3.8). Pairs were also detected with both hadrons measured at forward rapidity; in this case, the yield of back-to-back hadron pairs in d + Au collisions with small impact parameters is observed to be suppressed by a factor of 10 relative to p + p collisions. The kinematics of these pairs is expected to probe partons in the Au nu…
Low-mass vector-meson production at forward rapidity inp+pcollisions ats=200 GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low-mass vector-meson ,omega, rho, and phi, production through the dimuon decay channel at forward rapidity (1.2 mu mu) = 80 +/- 6(stat) +/- 12(syst)nb and d sigma/dy(phi -> mu mu) = 27 +/- 3(stat) +/- 4(syst)nb. These results are compared with midrapidity measurements and calculations.
Measurement of Long-Range Angular Correlation and Quadrupole Anisotropy of Pions and (Anti)Protons in Centrald+AuCollisions atsNN=200GeV
We present azimuthal angular correlations between charged hadrons and energy deposited in calorimeter towers in central d+Au and minimum bias p+p collisions at sqrt[s_{NN}]=200 GeV. The charged hadron is measured at midrapidity |η| 2.75 is observed in d+Au collisions. Using the event plane method applied to the Au-going energy distribution, we extract the anisotropy strength v_{2} for inclusive charged hadrons at midrapidity up to p_{T}=4.5 GeV/c. We also present the measurement of v_{2} for identified π^{±} and (anti)protons in central d+Au collisions, and observe a mass-ordering pattern similar to that seen in heavy-ion collisions. These results are compared with viscous hydrodynamic calc…
Spectra and ratios of identified particles in Au+Au andd+Au collisions atsNN=200GeV
The transverse momentum (p(T)) spectra and ratios of identified charged hadrons (pi(+/-), K-+/-, p, (p) over bar) produced in root s(NN) = 200 GeV Au + Au and d + Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p(T) = 6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p(T) = 4 GeV/c (3.5 GeV/c) in Au + Au (d + Au) collisions. In the intermediate p(T) region, between 2 and 5 GeV/c, a significant enhancement of baryon-to-meson ratios compared to those measured in p + p collisions is observed. This enhancement is present in both Au + Au and d + Au collisions and increases as th…
Nuclear modification factors ofϕmesons ind+Au,Cu+Cu, andAu+Aucollisions atsNN=200 GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has performed systematic measurements of phi meson production in the K+K- decay channel at midrapidity in p + p, d + Au, Cu + Cu, and Au + Au collisions at root s(NN) = 200 GeV. Results are presented on the phi invariant yield and the nuclear modification factor R-AA for Au + Au and Cu + Cu, and R-dA for d + Au collisions, studied as a function of transverse momentum (1 < p(T) < 7 GeV/c) and centrality. In central and midcentral Au + Au collisions, the R-AA of phi exhibits a suppression relative to expectations from binary scaled p + p results. The amount of suppression is smaller than that of the pi(0) and the. in the intermediat…
Measurement of J/ψ at forward and backward rapidity in p+p , p+Al , p+Au , and He3+Au collisions at sNN=200 GeV
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au, and He3+Au, at sNN=200 GeV. The results are presented in the form of the observable RAB, the nuclear modification …
Cross section and longitudinal single-spin asymmetry AL for forward W±→μ±ν production in polarized p+p collisions at s=510 GeV
We have measured the cross section and single-spin asymmetries from forward W±→μ±ν production in longitudinally polarized p+p collisions at s=510 GeV using the PHENIX detector at the Relativistic Heavy Ion Collider. The cross sections are consistent with previous measurements at this collision energy, while the most forward and backward longitudinal single spin asymmetries provide new insights into the sea quark helicities in the proton. The charge of the W bosons provides a natural flavor separation of the participating partons. © 2018 authors. Published by the American Physical Society.
Search for dark photons from neutral meson decays inp+pandd+Aucollisions atsNN=200 GeV
The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment (g−2)μ deviates from SM calculations by 3.6σ. Several theoretical models attribute this to the existence of a “dark photon,” an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, U, in π0,η→γe+e− decays and obtained upper limits of O(2×10−6) on U−γ mixing at 90% C.L. for the mass range 30<mU<90 MeV/c2. Combined with other experimental limits, the remaining region in the U−γ mixing parameter space that can explain the (g−2)μ deviation from its SM…
Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p+p collisions at s=510 GeV
Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=510$ GeV. Correlations of charged hadrons of $0.7<p_T<10$ GeV/$c$ with $\pi^0$ mesons of $4<p_T<15$ GeV/$c$ or isolated direct photons of $7<p_T<15$ GeV/$c$ are used to study nonperturbative effects generated by initial-state partonic transverse momentum and final-state transverse momentum from fragmentation. The nonperturbative behavior is characterized by measuring the out-of-plane transverse momentum component $p_{\rm out}$ perpendicular to the axis of the trigger particle, which is the high-$p_T$ direct photon or $\pi^0$. Nonperturbative evolution effects are extracted from …
Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized p+p collisions at s=510 GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|\eta|<0.35$) in longitudinally polarized $p+p$ collisions at $\sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $\sqrt{s}=200$ GeV, which show a nonzero positive contribution of…
Nuclear matter effects onJ/ψproduction in asymmetric Cu + Au collisions atsNN=200GeV
We report on J/psi production from asymmetric Cu + Au heavy-ion collisions at root S-NN = 200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/psi yields in Cu + Au collisions in the Au-going direction is found to be comparable to that inAu + Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/psi production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus.
Dielectron production in Au + Au collisions atsNN=200GeV
We present measurements of e+e- production at midrapidity in Au+Au collisions at sNN=200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass (mee<5 GeV/c2) and pair transverse momentum (pT<5 GeV/c) for minimum bias and for five centrality classes. The e+e- yield is compared to the expectations from known sources. In the low-mass region (mee=0.30-0.76 GeV/c2) there is an enhancement that increases with centrality and is distributed over the entire pair pT range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to 2.3±0.4(stat)±0.4(syst)±0.2(model) or to 1.7±0.3(stat)±0.3(syst)±0.2(model) for min…
Transverse-momentum dependence of theJ/ψnuclear modification ind+Au collisions atsNN=200GeV
We present measured J/psi production rates in d + Au collisions at root s(NN) = 200 GeV over broad ranges of transverse momentum (p(T) = 0-14 GeV/c) and rapidity (-2.2 1) for p(T) > 2 GeV/c. The observed enhancement at negative rapidity has implications for the interpretation of the observed modification in heavy-ion collisions at high p(T). DOI: 10.1103/PhysRevC.87.034904
Measurement ofKS0andK*0inp+p,d+Au, and Cu + Cu collisions atsNN=200 GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of K-S(0) and K*(0) meson production at midrapidity in p + p, d + Au, and Cu + Cu collisions at root s(NN) = 200 GeV. The K-S(0) and K*(0) mesons are reconstructed via their K-S(0) -> pi(0)(-> gamma gamma) pi(0)(-> gamma gamma) and K*(0) -> K-+/-pi(-/+) decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of K-S(0) and K*(0) mesons in d + Au and Cu + Cu collisions at different centralities. In the d + Au collisions, the nuclear modification factor of K-S(0) and K*(0) mesons is almost constant as a function of transverse momentum a…
Measurement of jet-medium interactions via direct photon-hadron correlations in Au+Au and d+Au collisions at sNN=200 GeV
We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct …
J/ψsuppression at forward rapidity in Au+Au collisions atsNN=39and 62.4 GeV
We present measurements of the J/psi invariant yields in root s(NN) = 39 and 62.4 GeV Au + Au collisions at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au + Au collisions (R-CP) and for various centrality selections in Au + Au relative to scaled p + p cross sections obtained from other measurements (R-AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various compe…
Centrality dependence of low-momentum direct-photon production inAu+Aucollisions atsNN=200 GeV
The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au+Au collisions at sNN−−−√=200 GeV down to pT=0.4 GeV/c. Photons are detected via photon conversions to e+e− pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low pT. We find an excess of direct photons above the Ncoll-scaled yield measured in p+p collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240MeV/c in the pT range 0.6–2.0 GeV/c. While the shape of the pT distribution is independent of centrality within the experimental uncert…
Charged-pion cross sections and double-helicity asymmetries in polarizedp+pcollisions ats=200 GeV
We present midrapidity charged-pion invariant cross sections, the ratio of the pi(-) to pi(+) cross sections and the charge-separated double-spin asymmetries in polarized p + p collisions at root s = p + 200 GeV. While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The char…
Ground and excited state charmonium production inp+pcollisions ats=200 GeV
We report on charmonium measurements [J/psi (1S), psi' (2S), and chi(c) (1P)] in p + p collisions at root s = 200 GeV. We find that the fraction of J/psi coming from the feed-down decay of psi' and chi(c) in the midrapidity region (vertical bar y vertical bar < 0: 35) is 9.6 +/- 2.4% and 32 +/- 9%, respectively. We also present the p(T) and rapidity dependencies of the J/psi yield measured via dielectron decay at midrapidity (vertical bar y vertical bar < 0.35) and via dimuon decay at forward rapidity (1.2 < vertical bar y vertical bar < 2.2). The statistical precision greatly exceeds that reported in our previous publication [Phys. Rev. Lett. 98, 232002 (2007)]. The new results are compare…
Measurements of Elliptic and Triangular Flow in High-MultiplicityHe3+AuCollisions atsNN=200 GeV
We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collis…
Production of π0 and η mesons in Cu+Au collisions at sNN=200GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show…