0000000000017642

AUTHOR

Riikka L. Puurunen

0000-0001-8722-4864

showing 14 related works from this author

Study of Ni, Pt, and Ru Catalysts on Wood-based Activated Carbon Supports and their Activity in Furfural Conversion to 2-Methylfuran

2018

Bio‐based chemicals can be produced from furfural through hydrotreatment. In this study, 2‐methylfuran (MF), a potential biofuel component, was produced with Pt, Ru, and Ni catalysts supported on wood‐based activated carbons. The catalytic hydrotreatment experiments were conducted in a batch reactor at 210–240 °C with 2‐propanol as solvent and 40 bar H2 pressure. Two types of activated carbon supports were prepared by carbonization and activation of lignocellulosic biomass (forest‐residue‐based birch and spruce from Finland). Both types of activated carbons were suitable as catalyst supports, giving up to 100 % furfural conversions. The most important factors affecting the MF yield were the…

Activated carbonbiokemikaalitBiomass2-Methylfuran010402 general chemistryFurfural01 natural sciencesCatalysisCatalysisInorganic Chemistrychemistry.chemical_compoundkatalyytitBiofuelmedicineOrganic chemistryactivated carbonbiomassa (teollisuus)BiomassmetallitPhysical and Theoretical Chemistryta116ta215biomass010405 organic chemistryOrganic ChemistryfurfuraalifurfuralFurfural0104 chemical sciencesfuraanitchemistryBiofuelaktiivihiilibiofuel2-Methylfuran2-methylfuranActivated carbonmedicine.drugChemCatChem
researchProduct

Comparison of mechanical properties and composition of magnetron sputter and plasma enhanced atomic layer deposition aluminum nitride films

2018

A comparative study of mechanical properties and elemental and structural composition was made for aluminum nitride thin films deposited with reactive magnetron sputtering and plasma enhanced atomic layer deposition (PEALD). The sputtered films were deposited on Si (100), Mo (110), and Al (111) oriented substrates to study the effect of substrate texture on film properties. For the PEALD trimethylaluminum–ammonia films, the effects of process parameters, such as temperature, bias voltage, and plasma gas (ammonia versus N2/H2), on the AlN properties were studied. All the AlN films had a nominal thickness of 100 nm. Time-of-flight elastic recoil detection analysis showed the sputtered films t…

elastic moduliMaterials scienceta22102 engineering and technologySubstrate (electronics)mechanical propertiesNitride01 natural sciencesAtomic layer depositionSputtering0103 physical sciencesTexture (crystalline)Composite materialThin filmta216kemiallinen analyysiAlNsputter deposition010302 applied physicsta114Surfaces and InterfacesSputter deposition021001 nanoscience & nanotechnologyCondensed Matter PhysicsX-ray diffractionfysikaaliset ominaisuudetSurfaces Coatings and FilmsElastic recoil detectionmetrologythin filmsAtomic Layer DepositionmetrologiaALDmechanical testingchemical analysisaluminum nitridesputteringohutkalvot0210 nano-technologyJournal of Vacuum Science & Technology A
researchProduct

Conversion of furfural to 2-methylfuran over CuNi catalysts supported on biobased carbon foams

2021

In this study, carbon foams prepared from the by-products of the Finnish forest industry, such as tannic acid and pine bark extracts, were examined as supports for 5/5% Cu/Ni catalysts in the hydrotreatment of furfural to 2-methylfuran (MF). Experiments were conducted in a batch reactor at 503 K and 40 bar H2. Prior to metal impregnation, the carbon foam from tannic acid was activated with steam (S1), and the carbon foam from pine bark extracts was activated with ZnCl2 (S2) and washed with acids (HNO3 or H2SO4). For comparison, a spruce-based activated carbon (AC) catalyst and two commercial AC catalysts as references were investigated. Compressive strength of the foam S2 was 30 times great…

Carbon nanofoamBatch reactorchemistry.chemical_elementkupari02 engineering and technology010402 general chemistryFurfural01 natural sciencesCatalysisCatalysischemistry.chemical_compoundkatalyytitTannic acidmedicinebiohiilicarbonGeneral Chemistrymechanical strengthfurfural021001 nanoscience & nanotechnology0104 chemical sciencesCu/Ni catalystvaahdotchemistrykatalyysisivutuotteet2-Methylfuran2-methylfurannikkeli0210 nano-technologybiobased foamsCarbonActivated carbonmedicine.drugNuclear chemistry
researchProduct

Thermal and plasma enhanced atomic layer deposition of SiO2 using commercial silicon precursors

2014

In this paper, we report ALD deposition of silicon dioxide using either thermal or plasma enhanced atomic layer deposition (PEALD). Several aminosilanes with differing structures and reactivity were used as silicon precursors in R&D single wafer ALD tools. One of the precursors was also tested on pilot scale batch ALD using O3 as oxidant and with substrates measuring 150 × 400 mm. The SiO2 film deposition rate was greatly dependent on the precursors used, highest values being 1.5-2.0 Å/cycle at 30-200°C for one precursor with an O2 plasma. According to time-of-flight-elastic recoil detection analysis measurements carbon and nitrogen impurities were relatively low, but hydrogen content i…

Materials scienceSiliconSilicon dioxideta221Conformal coatingAnalytical chemistrychemistry.chemical_elementchemistry.chemical_compoundAtomic layer depositionMaterials ChemistryAtomic layer epitaxySilicon dioxideta318Thin filmta216ta116Plasma processingplasma-enhanced atomic layer depositionPlasma-enhanced atomic layer depositionsilicon dioxideconformal coatingta213ta114Atomic layer depositionbatch depositionIon platingMetals and AlloysPrecursorsSurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistryatomic layer depositionprecursorsBatch depositionDeposition (chemistry)
researchProduct

Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

2016

The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as LCSi1, LCSi2, LCALD1, and LCALD2, representing the failure points of the silicon substrate and the coating delamination points of the ALD coating. The adhesion performance of the ALD Al2O3, TiO2, TiN, and TaCN+Ru coatings with a thickness range between 20 and 600 nm and dep…

piiMaterials scienceSiliconAnnealing (metallurgy)ta221chemistry.chemical_element02 engineering and technologyengineering.material01 natural sciencesAtomic layer depositionCoatingadheesio0103 physical sciencesWaferThin filmta216computer.programming_language010302 applied physicsta114MetallurgysiliconSurfaces and Interfacesatomikerroskasvatus021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Filmsadhesionthin filmschemistryscratch testScratchatomic layer depositionengineeringohutkalvot0210 nano-technologyTincomputerJournal of Vacuum Science and Technology A: Vacuum, Surfaces and Films
researchProduct

Mechanical and optical properties of as-grown and thermally annealed titanium dioxide from titanium tetrachloride and water by atomic layer deposition

2021

Funding Information: This work was carried out within the MECHALD project funded by Business Finland (Tekes) and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (ref. 251220) and Nuclear and Accelerator Based Physics (refs. 213503 and 251353) of the Academy of Finland. Funding Information: This work was carried out within the MECHALD project funded by Business Finland (Tekes) and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (ref. 251220 ) and Nuclear and Accelerator Based Physics (refs. 213503 and 251353 ) of the Academy of Finland. Publisher Copyright: © 2021 The use of thin-films made by atomic layer deposition (ALD) is increasing in …

optical propertiesMaterials scienceAnnealing (metallurgy)elastic modulusresidual stress02 engineering and technologyoptiset ominaisuudet01 natural sciencesStress (mechanics)Atomic layer depositionResidual stressTiO0103 physical sciencesMaterials ChemistryTiO2Composite materialThin filmElastic modulus010302 applied physicsMetals and AlloysSurfaces and Interfacesatomikerroskasvatus021001 nanoscience & nanotechnologyhardnessSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsfysikaaliset ominaisuudetAtomic Layer DepositionALDatomic layer depositionohutkalvot0210 nano-technologytitaanidioksidiRefractive indexLayer (electronics)
researchProduct

Nanotribological, nanomechanical and interfacial characterization of atomic layer deposited TiO2 on a silicon substrate

2015

Abstract For every coating it is critical that the coatings are sufficiently durable to withstand practical applications and that the films adhere well enough to the substrate. In this paper the nanotribological, nanomechanical and interfacial properties of 15–100 nm thick atomic layer deposited (ALD) TiO 2 coatings deposited at 110–300 °C were studied using a novel combination of nanoscratch and scanning nanowear testing. Thin film wear increased linearly with increasing scanning nanowear load. The film deposited at 300 °C was up to 58±11 %-points more wear-resistant compared to the films deposited at lower temperatures due to higher hardness and crystallinity of the film. Amorphous/nanocr…

Materials sciencenanoindentationta221NanotechnologySubstrate (electronics)Nanomechanical characterizationengineering.materialnanomachiningAtomic layer depositionScanning nanowearCoatingMaterials ChemistryTiO2Composite materialThin filmta216ta214ta114Atomic layer depositionNanotribologySurfaces and InterfacesCondensed Matter PhysicsNanoscratchNanocrystalline materialSurfaces Coatings and FilmsAmorphous solidInterfacial characterizationthin filmsMechanics of MaterialsengineeringCrystalliteLayer (electronics)Wear
researchProduct

Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol

2023

Funding Information: The work at Aalto University has been financially supported by the Academy of Finland (COOLCAT consortium, decision no. 329977 and 329978 ; ALDI consortium, decision no. 331082 ). This work made use of Aalto University Bioeconomy, OtaNano and RawMatters infrastructure. Hannu Revitzer (Aalto University) is thanked for the ICP-OES analysis, Aalto workshop people (especially Seppo Jääskeläinen) for working on the reactor modifications. The DFT calculations were made possible by computational resources provided by the CSC — IT Center for Science, Espoo, Finland ( https://www.csc.fi/en/ ) and computer capacity from the Finnish Grid and Cloud Infrastructure (urn:nbn:fi:resear…

hiilidioksidiProcess Chemistry and TechnologyAtomic layer depositionMethanolkupariatomikerroskasvatus114 Physical sciencesCatalysismetanolikatalyytitCarbon dioxidesinkkioksidiZinc oxideHydrogenationhydrausCopperGeneral Environmental Science
researchProduct

Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties

2017

Atomic layer deposition (ALD) is based on self-limiting surface reactions. This and cyclic process enable the growth of conformal thin films with precise thickness control and sharp interfaces. A multilayered thin film, which is nanolaminate, can be grown using ALD with tuneable electrical and optical properties to be exploited, for example, in the microelectromechanical systems. In this work, the tunability of the residual stress, adhesion, and mechanical properties of the ALD nanolaminates composed of aluminum oxide (Al2O3) and titanium dioxide (TiO2) films on silicon were explored as a function of growth temperature (110-300 C), film thickness (20-300 nm), bilayer thickness (0.1-100 nm),…

Materials scienceSiliconta221chemistry.chemical_elementNanotechnologyresidual stress02 engineering and technology01 natural sciencesStress (mechanics)chemistry.chemical_compoundAtomic layer depositioncontact modulusResidual stress0103 physical sciencesnanolaminatesThin filmComposite materialalumiinita216010302 applied physicsNanocompositeta114BilayeraluminiumSurfaces and Interfacesatomikerroskasvatus021001 nanoscience & nanotechnologyCondensed Matter PhysicshardnessSurfaces Coatings and FilmsadhesionnanolaminatechemistryAtomic Layer DepositionALDTitanium dioxide0210 nano-technologyJournal of Vacuum Science and Technology A
researchProduct

Tribological properties of thin films made by atomic layer deposition sliding against silicon

2018

Interfacial phenomena, such as adhesion, friction, and wear, can dominate the performance and reliability of microelectromechanical (MEMS) devices. Here, thin films made by atomic layer deposition (ALD) were tested for their tribological properties. Tribological tests were carried out with silicon counterpart sliding against ALD thin films in order to simulate the contacts occurring in the MEMS devices. The counterpart was sliding in a linear reciprocating motion against the ALD films with the total sliding distances of 5 and 20 m. Al2O3 and TiO2 coatings with different deposition temperatures were investigated in addition to Al2O3-TiO2-nanolaminate, TiN, NbN, TiAlCN, a-C:H [diamondlike car…

kitkaMaterials scienceSiliconDiamond-like carbonfrictionnanomateriaalitchemistry.chemical_element02 engineering and technologyNitride01 natural sciencesAtomic layer deposition0103 physical sciencesComposite materialThin filmta216nanomaterials010302 applied physicsNanocompositeatomsta115ta114tribologiaSurfaces and InterfacesTribologyatomikerroskasvatus021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and Filmsatomitchemistrythin filmsatomic layer depositiontribologyohutkalvot0210 nano-technologyContact areaJOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A
researchProduct

Aluminum oxide from trimethylaluminum and water by atomic layer deposition:The temperature dependence of residual stress, elastic modulus, hardness a…

2014

Use of atomic layer deposition (ALD) in microelectromechanical systems (MEMS) has increased as ALD enables conformal growth on 3-dimensional structures at relatively low temperatures. For MEMS device design and fabrication, the understanding of stress and mechanical properties such as elastic modulus, hardness and adhesion of thin film is crucial. In this work a comprehensive characterization of the stress, elastic modulus, hardness and adhesion of ALD aluminum oxide (Al2O3) films grown at 110-300 C from trimethylaluminum and water is presented. Film stress was analyzed by wafer curvature measurements, elastic modulus by nanoindentation and surface-acoustic wave measurements, hardness by na…

Materials scienceta221Residual stressAluminum oxideStress (mechanics)Atomic layer depositionEllipsometryResidual stressHardnessMaterials Chemistryta318Thin filmComposite materialta216ta116Elastic modulusta213ta114Atomic layer depositionMetals and AlloysSurfaces and InterfacesNanoindentationSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElastic recoil detectionAdhesionElastic modulus
researchProduct

Depth profiling of Al2O3 + TiO2 nanolaminates by means of a time-of-flight energy spectrometer

2011

Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al2O3 + TiO2 nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyväskylä. In TOF-E measurements 63Cu, 35Cl, 12C and 4He ions…

ToF-ERDANuclear and High Energy Physicsdepth profilingMaterials scienceSpectrometerta114business.industryAnalytical chemistryERDIonTotal thicknessElastic recoil detectionTime of flightAtomic layer depositionnanolaminateAl2O3 and TiO2ALDOptoelectronicsThin filmbusinessInstrumentationEnergy (signal processing)
researchProduct

Review article: recommended reading list of early publications on atomic layer deposition - outcome of the "virtual Project on the History of ALD"

2017

Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual proj…

semiconductor manufacturingThin filmsPatent literature2015 Nano TechnologyHOL - HolstLibrary scienceNanotechnology02 engineering and technologydeposition01 natural sciencesPoster presentationsAtomic layer deposition0103 physical sciencesAtomic layer epitaxy[CHIM]Chemical SciencesReading listPatentsComputingMilieux_MISCELLANEOUSgas-solid reaction010302 applied physicsTS - Technical SciencesIndustrial Innovationinorganic materialPhysicsAtomic layer depositionSilicaSurfaces and InterfacesatomikerroskasvatusAtomic layer021001 nanoscience & nanotechnologyCondensed Matter Physicshistory of technologySurfaces Coatings and FilmsALD0210 nano-technologySoviet unionAtomic layer epitaxial growthEpitaxyJournal of Vacuum Science and Technology A
researchProduct

Thermomechanical properties of aluminum oxide thin films made by atomic layer deposition

2022

Funding Information: This work was carried out within the MECHALD project funded by Business Finland and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (Ref. No. 251220) and Nuclear and Accelerator Based Physics (Ref Nos. 213503 and 251353) of the Academy of Finland. Publisher Copyright: © 2022 Author(s). In microelectromechanical system devices, thin films experience thermal processing at temperatures some cases exceeding the growth or deposition temperature of the film. In the case of the thin film grown by atomic layer deposition (ALD) at relatively low temperatures, post-ALD thermal processing or high device operation temperature might cause performance issues…

lämpökäsittelyjäännösjännityksetALDatomic layer depositionalumiinioksidiohutkalvotatomikerroskasvatusoptiset ominaisuudet
researchProduct