0000000000017759
AUTHOR
Diego Di Francesca
Resonance Raman of oxygen dangling bonds in amorphous silicon dioxide
We investigate the origin of a resonance Raman band induced by ionizing radiation in amorphous silicon dioxide (silica glass), which can be detected under ultraviolet laser excitation. A silica sample, rich of oxygen-excess related defects, was prepared by treating some length of a pure-silica-core multimode fiber in an O2 atmosphere (at high temperature and pressure) and by irradiating it with X-rays at 10 MGy(SiO2) dose. A micro-Raman study revealed a gaussian band peaking at 896 cm−1 with a full width at half maximum of 32 cm−1, which could be detected by exciting the sample with the 325-nm line of a HeCd laser. This spectral feature is absent in the Raman spectra performed with the 442-…
Ge-doped silica nanoparticles: production and characterisation
Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.
X-ray irradiation effects on fluorine-doped germanosilicate optical fibers
International audience; We report an experimental investigation on the effects of fluorine codoping on the radiation response of Ge-doped Optical Fibers (OFs) obtained by three different drawing conditions. The OFs were irradiated with 10 keV X-rays up to 300 Mrad and studied by online Radiation-Induced-Attenuation (RIA) measurements. Confocal Micro- Luminescence (CML) and Electron Paramagnetic Resonance (EPR) were also employed to investigate the permanent radiation-induced-defects. The variation of the Germanium-Lone-Pair-Center (GLPC) and Non-Bridging- Oxygen-Hole-Centers (NBOHC) concentration with the radiation dose is investigated by CML, whereas the ones of the induced Ge(1), Ge(2) an…
Evidence of different red emissions in irradiated germanosilicate materials
International audience; This experimental investigation is focused on a radiation induced red emission in Ge doped silica materials, elaborated with different methods and processes. The differently irradiated samples as well as the pristine ones were analyzed with various spectroscopic techniques, such as confocal microscopy luminescence (CML), time resolved luminescence (TRL), photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). Our data prove that irradiation induces a red luminescence related to the presence of the Ge atoms. Such emission features a photoexcitation spectrum in the UV-blue spectral range and, TRL measurements show that its decrease differs from a …
Interstitial O2 distribution in amorphous SiO2 nanoparticles determined by Raman an Photoluminescence spectroscopy
The O2 content and emission properties in silica nanoparticles after thermal treatments in oxygen rich atmosphere have been investigated by Raman and photoluminescence measurements. The nanoparticles have different sizes with average diameter ranging from 7 up to 40 nm. It is found that O2 concentration in nanoparticles monotonically increases with nanoparticles size. This finding is independent on the measurement technique and evidences that oxygen molecules are not present in all the nanoparticles volume. This dependence is interpreted on the basis of a structural model for nanoparticles consisting of a core region able to host the oxygen molecules and a surface shell of fixed size and fr…
Near infrared radio-luminescence of O2 loaded radiation hardened silica optical fibers: A candidate dosimeter for harsh environments
We report on an experimental investigation of the infrared Radio-Luminescence (iRL) emission of interstitial O2 molecules loaded in radiation hardened pure-silica-core and fluorine-doped silica-based optical fibers (OFs). The O2 loading treatment successfully dissolved high concentrations of oxygen molecules into the silica matrix. A sharp luminescence at 1272 nm was detected when 2.5 cm of the treated OFs were irradiated with 10 keV X-rays. This emission originates from the radiative decay of the first excited singlet state of the embedded O2 molecules. The dose, dose-rate, and temperature dependencies of the infrared emission are studied through in situ optical measurements. The results s…
O2-Loading Treatment of Ge-Doped Silica Fibers: A Radiation Hardening Process
International audience; The effects of a high-pressure O2-loading treatment on the radiation response of Ge-doped optical fibers (OFs) were investigated. We found that the incorporation of high concentration of interstitial molecular oxygen remarkably enhances the resistance to ionizing radiation of Ge-doped OFs in the UV-Visible domain and, at the same time, improves the transmission of UV light in the unirradiated OF sample. By comparison with previously reported results, the O2-loading treatment turned out to increase the radiation resistance of Ge-doped OFs more efficiently than F or Ce codoping. The understanding of such amelioration relies in basic radiation-induced mechanisms that we…
Influence of O2 loading pre-treatment on the radiation response of pure and fluorine doped silica-based optical fibers
International audience; We investigated the impact of an oxygen pre-loading on pure-silica-core or fluorine-doped-core fiber responses to high irradiation doses (up to 1 MGy(SiO2)). Oxygen enrichment was achieved through a diffusion-based technique and the long term presence of O2 molecules was confirmed by micro-Raman experiments. Online Radiation Induced Attenuation (RIA) experiments were carried out in both the pristine and the O2-loaded optical fibers to investigate the differences induced by this pre-treatment in the UV and visible ranges. Contrary to results recently published on the positive impact of O2 on infrared RIA, our results reveal a RIA increased with O2 presence. Data are a…
Influence of <formula formulatype="inline"><tex Notation="TeX">${\hbox{O}}_2$</tex></formula>-Loading Pretreatment on the Radiation Response of Pure and Fluorine-Doped Silica-Based Optical Fibers
We investigated the impact of an oxygen preloading on pure-silica-core or fluorine-doped-core fiber responses to high irradiation doses (up to 1 MGy (SiO 2 )). Oxygen enrichment was achieved through a diffusion-based technique, and the long-term presence of O 2 molecules was confirmed by micro-Raman experiments. Online radiation induced attenuation (RIA) experiments were carried out in both the pristine and the O 2 -loaded optical fibers to investigate the differences induced by this pretreatment in the UV and visible ranges. Contrary to results recently published on the positive impact of O 2 on infrared RIA, our results reveal a RIA increase with O 2 presence. Data are analyzed in order t…
Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers
International audience; We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E0 Ge and E0 Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than *450 K, whereas the E0 defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects…
Spectral properties and lifetime of green emission in γ-ray irradiated bismuth-doped silica photonic crystal fibers
Abstract We report an experimental investigation focused on the green emission detected in γ-ray irradiated Bismuth-doped photonic crystal fibers. Our photoluminescence spectra, recorded at room temperature, provide evidence for the presence of two emission bands both located at ~ 530 nm (2.34 eV). One emission is detected only in the Bi-doped core while the other, is detected in the cladding. These two emissions feature different excitation spectra and a fast and a slow decay lifetime. The origin of the fast emission decay, about ten nanoseconds, is tentatively attributed to a silica intrinsic defect, whereas the slow component, having lifetime of about 2 μs and featuring anti-stokes emiss…
Irradiation temperature effects on the induced point defects in Ge-doped optical fibers
We present an experimental investigation on the combined effects of temperature and irradiation on Ge-doped optical fibers. Our samples were X-ray (10 keV) irradiated up to 5 kGy with a dose rate of 50 Gy(SiO2)/s changing the irradiation temperature in the range 233-573 K. After irradiation we performed electron paramagnetic resonance (EPR) and confocal microscopy luminescence (CML) measurements. The recorded data prove the generation of different Ge related paramagnetic point defects and of a red emission, different from that of the Ge/Si Non-Bridging Oxygen Hole center. Furthermore, by comparing the behaviour of the EPR signal of the Ge(1) as a function of the irradiation temperature with…
O2 Loaded Germanosilicate Optical Fibers: Experimental In Situ Investigation and Ab Initio Simulation Study of GLPC Evolution under Irradiation
International audience; In this work we present a combined experimental and ab initio simulation investigation concerning the Germanium Lone Pair Center (GLPC), its interaction with molecular oxygen (O2), and evolution under irradiation. First, O2 loading has been applied here to Ge-doped optical fibers to reduce the concentration of GLPC point defects. Next, by means of cathodoluminescence in situ experiments, we found evidence that the 10 keV electron irradiation of the treated optical fibers induces the generation of GLPC centers, while in nonloaded optical fibers, the irradiation causes the bleaching of the pre-existing GLPC. Ab initio calculations were performed to investigate the reac…
Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers
International audience; We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) d…
Pulsed X‐Ray Radiation Responses of Solarization‐Resistant Optical Fibers
International audience; The transient radiation‐induced attenuation (RIA) of two different versions of pure‐silica‐core (PSC) multimode optical fibers (so‐called “solarization‐resistant” fibers) exposed to nanosecond 1 MeV X‐ray pulses are investigated. On‐line RIA spectra measurements at both room temperature (RT) and liquid nitrogen temperatures (LNT) in the range 1–3.5 eV are performed. Following the RIA kinetics, the properties of the metastable defects that are bleached just after the pulse are discussed. The spectral decomposition of the RIA is performed using known Gaussian bands associated to point defects absorbing in this spectral range. For both fiber types, the generation and th…
Combined Temperature Radiation Effects and Influence of Drawing Conditions on Phosphorous‐Doped Optical Fibers
International audience; This work focuses on the effects of high dose ionizing radiation, up to 10 MGy(SiO2), on P‐doped multimode optical fibers (OF) at different irradiation temperatures. The investigation is based on two complementary experimental techniques: radiation‐induced attenuation (RIA) measurements and electron paramagnetic resonance (EPR). The latter technique allows measuring the P1, P2, metastable‐POHC and stable‐POHC defects. Three OF samples are drawn from the same preform to evaluate the influence of changing their drawing conditions of the OFs on the radiation responses. This first study is performed under X‐rays at room temperature. The results are compared with the ones…
Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers
International audience; We investigate the response of Ge-doped, P-doped, pure-silica, or Fluorine-doped fibers to extreme environments combining doses up to MGy(SiO $_{{{2}}}$) level of 10 keV X-rays and temperatures between 25 C and 300 C . First, we evaluate their potential to serve either as parts of radiation tolerant optical or optoelectronic systems or at the opposite, for the most sensitive ones, as punctual or distributed dosimeters. Second, we improve our knowledge on combined ionizing radiations and temperature (R&T) effects on radiation-induced attenuation (RIA) by measuring the RIA spectra in the ultraviolet and visible domains varying the R&T conditions. Our results reveal the…
Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser
International audience; We report an experimental study demonstrating the feasibility to produce both pure and Ge-doped silica nanoparticles (size ranging from tens up to hundreds of nanometers) using nanosecond pulsed KrF laser ablation of bulk glass. In particular, pure silica nanoparticles were produced using a laser pulse energy of 400 mJ on pure silica, whereas Ge-doped nanoparticles were obtained using 33 and 165 mJ per pulse on germanosilicate glass. The difference in the required energy is attributed to the Ge doping, which modifies the optical properties of the silica by facilitating energy absorption processes such as multiphoton absorption or by introducing absorbing point defect…
Gd 3+ -doped sol-gel silica glass for remote ionizing radiation dosimetry
Gadolinium-doped silica glass was prepared, using the sol-gel route, for ionizing radiation dosimetry applications. Such a glassy rod was drawn to a cane at a temperature of 2000 °C. The structural and optical properties of the obtained material were studied using Raman, optical absorption, and photoluminescence spectroscopies. Thereafter, a small piece of this Gd-doped scintillating cane was spliced to a transport passive optical fiber, allowing the remote monitoring of the X-ray dose rate through a radioluminescence (RL) signal. The sample exhibited a linear RL intensity response versus the dose rate from 125 µGy(SiO2)/s up to 12.25 Gy/s. These results confirm the potentialities of this m…
Near‐IR Radiation‐Induced Attenuation of Aluminosilicate Optical Fibers
The X-ray radiation-induced attenuation (RIA) growth kinetics are studied online in different single-mode aluminosilicate optical fibers in the near-IR (NIR) domain to evaluate their potential in terms of dosimetry. The optical fibers differ by Al contents, core sizes, drawing parameters, and also by a preform deposition process. The data show no dependence of the RIA on all these parameters, a positive result for the design of point or distributed radiation detectors exploiting RIA to monitor the dose. The RIA growth rate is unchanged for dose rates changing from 0.073 to 6.25 Gy(SiO2) s−1, and the RIA linearly increases with the dose up to 2 kGy(SiO2). Small but noticeable RIA changes are…
Overview of radiation induced point defects in silica-based optical fibers
International audience; Silica-based optical fibers, fiber-based devices and optical fiber sensors are today integrated in a variety of harsh environments associated with radiation constraints. Under irradiation, the macroscopic properties of the optical fibers are modified through three main basic mechanisms: the radiation induced attenuation, the radiation induced emission and the radiation induced refractive index change. Depending on the fiber profile of use, these phenomena differently contribute to the degradation of the fiber performances and then have to be either mitigated for radiation tolerant systems or exploited to design radiation detectors and dosimeters. Considering the stro…
Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers
International audience; The UV-visible radiation induced attenuation (RIA) was studied in Ge-doped optical fibers, during X-ray (10 keV) irradiations at different temperatures. By comparing the spectra recorded in dissimilarly irradiated samples we evidenced the impact of the irradiation temperature. In details, we highlighted that, from a certain dose, increasing the temperature the RIA decreases for wavelengths lower than 470 nm, whereas at higher wavelengths the RIA depends only on the dose. Such findings suggest that it is possible to distinguish the irradiation temperature by comparing the signal at two different wavelengths. From the microscopic point of view, it appears that the RIA …
Radiation Response of Ce-Doped Phosphosilicate Optical Fibers
International audience; We report an experimental study of the radiation effects on silica-based multimode optical fibers (OFs) either doped with Phosphorus or with Phosphorus and Cerium. Online Radiation-Induced-Absorption (RIA) measurements were performed in the UV-visible spectral domain under 10 keV X-ray Irradiation. Optical Absorption (OA) in the Near Infrared Region (NIR) and Electron Paramagnetic Resonance (EPR) measurements were also performed on γ-irradiated OFs.
Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers
International audience; We applied theoretical and experimental spectroscopy tools to ad hoc silica-based "canonical" samples to characterize the influence of several dopants and of some drawing process parameters on their radiation sensitivities. We present in this paper, the recent advances and results occurring from our coupled approach. On the experimental side, we studied the doping influence on the response of optical fibers and showed that changing the drawing parameters has a negligible influence on the fiber response in the case of specialty fibers. We focus mainly on the ${rm SiE}^prime$ defect that is observed through Electron Paramagnetic Resonance (EPR) measurements in all cano…
Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers
International audience; We report an experimental investigation on the radiation induced attenuation (RIA) in the ultraviolet-visible domain for Ge-doped optical fibers, during X-rays (10 keV) exposure at different temperatures. The objective is to characterize the impact of the irradiation temperature on the RIA levels and kinetics. Our data highlight that for dose exceeding 1 kGy(SiO2) the RIA spectrum changes with the irradiation temperature. In particular, for wavelengths below 470 nm the RIA depends both on the dose and on the irradiation temperature, whereas at higher wavelengths the RIA depends only on the dose. From the microscopic point of view the origin of this behavior is explai…
Resonance Raman of oxygen dangling bonds in amorphous silicon dioxide
We investigate the origin of a resonance Raman band induced by ionizing radiation in amorphous silicon dioxide (silica glass), which can be detected under ultraviolet laser excitation. A silica sample, rich of oxygen-excess related defects, was prepared by treating some length of a pure-silica-core multimode fiber in an O2 atmosphere (at high temperature and pressure) and by irradiating it with X-rays at 10 MGy(SiO2) dose. A micro-Raman study revealed a gaussian band peaking at 896 cm−1 with a full width at half maximum of 32 cm−1, which could be detected by exciting the sample with the 325-nm line of a HeCd laser. This spectral feature is absent in the Raman spectra performed with the 442-…
Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers
We report an experimental investigation on the effects of Ce-codoping in determining the radiation response of germanosilicate and phosphosilicate Optical Fibers (OFs) in the UV-Visible domain and up to doses of $1~\hbox{MGy}({\rm SiO}_{2})$ . We show that the addition of Ce strongly impacts the Radiation Induced Attenuation (RIA) of both types of fibers. In the first case the radiation induced losses increase, whereas in the second one decrease. By combining the online RIA measurements with the Electron Paramagnetic Resonance (EPR) ones, we are able to infer the basic microscopic mechanisms taking place under irradiation, which involve the cerium codopant and some of the known Ge-related o…
Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading
The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…
The relevance of point defects in studying silica-based materials from bulk to nanosystems
The macroscopic properties of silica can be modified by the presence of local microscopic modifications at the scale of the basic molecular units (point defects). Such defects can be generated during the production of glass, devices, or by the environments where the latter have to operate, impacting on the devices’ performance. For these reasons, the identification of defects, their generation processes, and the knowledge of their electrical and optical features are relevant for microelectronics and optoelectronics. The aim of this manuscript is to report some examples of how defects can be generated, how they can impact device performance, and how a defect species or a physical phenomenon …