0000000000021445

AUTHOR

B. Garrido

Optical emission fromSiO2-embedded silicon nanocrystals: A high-pressure Raman and photoluminescence study

We investigate the optical properties of high-quality Si nanocrystals $(\mathrm{NCs})/\mathrm{Si}{\mathrm{O}}_{2}$ multilayers under high hydrostatic pressure with Raman scattering and photoluminescence (PL) measurements. The aim of our study is to shed light on the origin of the optical emission of the Si $\mathrm{NCs}/\mathrm{Si}{\mathrm{O}}_{2}$. The Si NCs were produced by chemical-vapor deposition of Si-rich oxynitride $(\mathrm{SRON})/\mathrm{Si}{\mathrm{O}}_{2}$ multilayers with 5- and 4-nm SRON layer thicknesses on fused silica substrates and subsequent annealing at 1150 \ifmmode^\circ\else\textdegree\fi{}C, which resulted in the precipitation of Si NCs with an average size of 4.1 a…

research product

Boron doping of silicon rich carbides: Electrical properties

Boron doped multilayers based on silicon carbide/silicon rich carbide, aimed at the formation of silicon nanodots for photovoltaic applications, are studied. X-ray diffraction confirms the formation of crystallized Si and 3C-SiC nanodomains. Fourier Transform Infrared spectroscopy indicates the occurrence of remarkable interdiffusion between adjacent layers. However, the investigated material retains memory of the initial dopant distribution. Electrical measurements suggest the presence of an unintentional dopant impurity in the intrinsic SiC matrix. The overall volume concentration of nanodots is determined by optical simulation and is shown not to contribute to lateral conduction. Remarka…

research product