0000000000022974

AUTHOR

Diana Aguirre-rueda

0000-0003-2019-0457

showing 6 related works from this author

Anti-adrenergic effects of ranolazine in isolated rat aorta

2014

Ranolazine, a piperazine derivative, is used as an anti- anginal drug to treat patients with chronic angina in clinical practice [1] and may improve coronary blood flow by reducing compression effects of ischemic contracture, and by improving endothelial function [2],[3]. In the present study we investigate the vascular effects of ranolazine on the endothelium, adrenergic system and Ca2+ in isolated rat aorta.

DrugAortaEndotheliumbusiness.industrymedia_common.quotation_subjectRanolazineAdrenergicChronic anginaBlood flowIschemic ContracturePharmacologyCritical Care and Intensive Care Medicinemedicine.anatomical_structuremedicine.arteryPoster Presentationmedicinebusinessmedicine.drugmedia_commonCritical Care
researchProduct

Astrocytes Protect Neurons from Aβ1-42 Peptide-Induced Neurotoxicity Increasing TFAM and PGC-1 and Decreasing PPAR-γ and SIRT-1

2015

One of the earliest neuropathological events in Alzheimer's disease is accumulation of astrocytes at sites of Aβ1-42 depositions. Our results indicate that Aβ1-42 toxic peptide increases lipid peroxidation, apoptosis and cell death in neurons but not in astrocytes in primary culture. Aβ1-42-induced deleterious neuronal effects are not present when neurons and astrocytes are mixed cultured. Stimulation of astrocytes with toxic Aβ1-42 peptide increased p-65 and decreased IκB resulting in inflammatory process. In astrocytes Aβ1-42 decreases protein expressions of sirtuin 1 (SIRT-1) and peroxisome proliferator-activated receptor γ (PPAR-γ) and over-expresses peroxisome proliferator-activated re…

MnSODProgrammed cell deathPPAR-γPeroxisome proliferator-activated receptorMitochondrionBiologyBioinformaticsmedicine.disease_causeAlzheimer's DiseaseNeurologiaPGC-1Sirtuin 1medicineAnimalsTFAMCells Culturedchemistry.chemical_classificationNeuronsAmyloid beta-PeptidesCell DeathSirtuin 1Caspase 3Superoxide DismutaseNeurotoxicityTranscription Factor RelAGeneral MedicineTFAMmedicine.diseasePeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaCoculture TechniquesPeptide FragmentsCell biologyMitochondriaPeroxidesRatsPPAR gammachemistryMitochondrial biogenesisNF-κB.Astrocytesbiology.proteinFisiologia humanaLipid PeroxidationOxidative stressResearch PaperTranscription FactorsInternational Journal of Medical Sciences
researchProduct

Anti-inflammatory and antioxidant effects of ranolazine on primary cultured astrocytes

2014

Because of its ability to block late INa [1], ranolazine is used as an antianginal agent for the treatment of chronic angina pectoris when angina is not adequately controlled by other agents [2]. Besides its cardiovascular effects, ranolazine improves different neuronal functions, and thus its use has been proposed for the treatment of pain and epileptic disorders [3,4]. Since astrocytes are involved in neuronal inflammatory processes, and autoimmune and neurodegenerative diseases [5], we have investigated the antiinflammatory and antioxidant effects of ranolazine in primary cultured astrocytes.

Antioxidantmedicine.drug_classbusiness.industrymedicine.medical_treatmentRanolazineChronic anginaPharmacologymedicine.diseaseCritical Care and Intensive Care MedicineAnti-inflammatoryAnginaPoster Presentationmedicinebusinessmedicine.drugCritical Care
researchProduct

Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.

2016

Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The …

0301 basic medicineMacroglial CellsPhysiologyInterleukin-1betaProtein ExpressionCell Culture Techniqueslcsh:MedicineApoptosisPharmacologyPathology and Laboratory Medicine0302 clinical medicineRanolazineAnimal CellsImmune PhysiologyMedicine and Health SciencesEnzyme assaysColorimetric assaysEnzyme-Linked Immunoassayslcsh:ScienceBioassays and physiological analysisImmune ResponseNeuronsInnate Immune SystemMultidisciplinaryMTT assayCell DeathCaspase 3medicine.anatomical_structureCell ProcessesCytokinesTumor necrosis factor alphaCellular TypesAstrocyteResearch ArticleProgrammed cell deathCell SurvivalImmunologyCaspase 3Glial CellsBiologyGene Expression Regulation EnzymologicMitochondrial Proteins03 medical and health sciencesSigns and SymptomsmedicineGene Expression and Vector TechniquesAnimalsMTT assayViability assayMolecular Biology TechniquesImmunoassaysMolecular BiologyInflammationMolecular Biology Assays and Analysis TechniquesSuperoxide DismutaseTumor Necrosis Factor-alphalcsh:RBiology and Life SciencesCell BiologyMolecular DevelopmentRatsPPAR gammaResearch and analysis methodsOxidative Stress030104 developmental biologyCell cultureApoptosisAstrocytesImmune SystemBiochemical analysisImmunologic Techniqueslcsh:QFisiologia humanaApoptosis Regulatory ProteinsCarrier Proteins030217 neurology & neurosurgeryDevelopmental BiologyPloS one
researchProduct

WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture

2015

Alzheimer's disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in…

Cannabinoid receptormedicine.medical_treatmentInterleukin-1betaNitric Oxide Synthase Type IIlcsh:Medicinemedicine.disease_causeReceptors CannabinoidWIN 55212-2Receptorlcsh:ScienceCerebral CortexMultidisciplinaryCalcium Channel BlockersSistema nerviós Malaltiesmedicine.symptomSignal transductionResearch ArticleSignal Transductionmedicine.drugmedicine.medical_specialtyCell SurvivalMorpholinesPrimary Cell CultureInflammationNaphthalenesBiologyNeurologiaFetusInternal medicinemedicineAnimalsViability assayCannabinoid Receptor AgonistsAmyloid beta-PeptidesSuperoxide DismutaseTumor Necrosis Factor-alphalcsh:RTranscription Factor RelAPeptide FragmentsBenzoxazinesRatsPPAR gammaOxidative StressEndocrinologyGene Expression RegulationCyclooxygenase 2Astrocyteslcsh:QFisiologia humanaCannabinoidOxidative stress
researchProduct

Sugammadex, a Neuromuscular Blockade Reversal Agent, Causes Neuronal Apoptosis in Primary Cultures

2013

Sugammadex, a γ-cyclodextrin that encapsulates selectively steroidal neuromuscular blocking agents, such as rocuronium or vecuronium, has changed the face of clinical neuromuscular pharmacology. Sugammadex allows a rapid reversal of muscle paralysis. Sugammadex appears to be safe and well tolerated. Its blood-brain barrier penetration is poor (< 3% in rats), and thus no relevant central nervous toxicity is expected. However the blood brain barrier permeability can be altered under different conditions (i.e. neurodegenerative diseases, trauma, ischemia, infections, or immature nervous system). Using MTT, confocal microscopy, caspase-3 activity, cholesterol quantification and Western-blot we …

Estrès oxidatiuSmac/Diablo and CASP-3.BiologyPharmacologymedicine.disease_causeSugammadexSugammadexAIFmedicineAnimalsRocuroniumCytCCells CulturedFisiologia cel·lularNeuronsNeuromuscular BlockadeapoptosisGeneral MedicineNeuromuscular Blocking AgentsRatsOxidative StressApoptosisAnesthesiaToxicityNeuromuscular BlockadeNeuron deathOxidative stressmedicine.drugResearch Papergamma-CyclodextrinsInternational Journal of Medical Sciences
researchProduct