0000000000022981
AUTHOR
Jose Mª Vila
Anti-adrenergic effects of ranolazine in isolated rat aorta
Ranolazine, a piperazine derivative, is used as an anti- anginal drug to treat patients with chronic angina in clinical practice [1] and may improve coronary blood flow by reducing compression effects of ischemic contracture, and by improving endothelial function [2],[3]. In the present study we investigate the vascular effects of ranolazine on the endothelium, adrenergic system and Ca2+ in isolated rat aorta.
Astrocytes Protect Neurons from Aβ1-42 Peptide-Induced Neurotoxicity Increasing TFAM and PGC-1 and Decreasing PPAR-γ and SIRT-1
One of the earliest neuropathological events in Alzheimer's disease is accumulation of astrocytes at sites of Aβ1-42 depositions. Our results indicate that Aβ1-42 toxic peptide increases lipid peroxidation, apoptosis and cell death in neurons but not in astrocytes in primary culture. Aβ1-42-induced deleterious neuronal effects are not present when neurons and astrocytes are mixed cultured. Stimulation of astrocytes with toxic Aβ1-42 peptide increased p-65 and decreased IκB resulting in inflammatory process. In astrocytes Aβ1-42 decreases protein expressions of sirtuin 1 (SIRT-1) and peroxisome proliferator-activated receptor γ (PPAR-γ) and over-expresses peroxisome proliferator-activated re…
Effects of exercise training on adrenergic and cholinergic responses of rabbit carotid artery
Facilitation of Insulin Effects by Ranolazine in Astrocytes in Primary Culture
Ranolazine (Rn) is a drug used to treat persistent chronic coronary ischemia. It has also been shown to have therapeutic benefits on the central nervous system and an anti-diabetic effect by lowering blood glucose levels and however, no effects of Rn on cellular sensitivity to insulin (Ins) have been demonstrated yet. The present study aimed to investigate the permissive effects of Rn on the actions of Ins in astrocytes in primary culture. Ins at 10-8 M, Rn (10-6 M) and Ins+Rn (10-8 M and 10−6 M respectively) were added to astrocytes during 24 h. In comparison to control cells, Rn and/or Ins caused modifications in cell viability and proliferation. p-AKT, p-ERK, p-eNOS, Mn-SOD, COX-2, and t…
Changes in Chemokines and Chemokine Receptors Expression in a Mouse Model of Alzheimer's Disease
The amyloid precursor protein plus presenilin-1 (APP/PS1) mice are a frequently-used model for Alzheimer's disease studies (AD). However, the data relevant to which proteins are involved in inflammatory mechanism are not sufficiently well-studied using the AD mouse model. Using behavioral studies, quantitative RT-PCR and Western-blot techniques, significant findings were determined by the expression of proteins involved in inflammation comparing APP/PS1 and Wild type mice. Increased GFAP expression could be associated with the elevation in number of reactive astrocytes. IL-3 is involved in inflammation and ABDF1 intervenes normally in the transport across cell membranes and both were found …
Anti-inflammatory and antioxidant effects of ranolazine on primary cultured astrocytes
Because of its ability to block late INa [1], ranolazine is used as an antianginal agent for the treatment of chronic angina pectoris when angina is not adequately controlled by other agents [2]. Besides its cardiovascular effects, ranolazine improves different neuronal functions, and thus its use has been proposed for the treatment of pain and epileptic disorders [3,4]. Since astrocytes are involved in neuronal inflammatory processes, and autoimmune and neurodegenerative diseases [5], we have investigated the antiinflammatory and antioxidant effects of ranolazine in primary cultured astrocytes.
Neuronal effects of Sugammadex in combination with Rocuronium or Vecuronium.
Rocuronium (ROC) and Vecuronium (VEC) are the most currently used steroidal non-depolarizing neuromuscular blocking (MNB) agents. Sugammadex (SUG) rapidly reverses steroidal NMB agents after anaesthesia. The present study was conducted in order to evaluate neuronal effects of SUG alone and in combination with both ROC and VEC. Using MTT, CASP-3 activity and Western-blot we determined the toxicity of SUG, ROC or VEC in neurons in primary culture. SUG induces apoptosis/necrosis in neurons in primary culture and increases cytochrome C (CytC), apoptosis-inducing factor (AIF), Smac/Diablo and Caspase 3 (CASP-3) protein expression. Our results also demonstrated that both ROC and VEC prevent these…
Effects of Ranolazine on Astrocytes and Neurons in Primary Culture.
Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10-7, 10-6 and 10-5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The …
Action of low doses of Aspirin in Inflammation and Oxidative Stress induced by aβ1-42 on Astrocytes in primary culture
Aspirin has been used as anti-inflammatory and anti-aggregate for decades but the precise mechanism(s) of action after the presence of the toxic peptide Aβ1-42 in cultured astrocytes remains poorly resolved. Here we use low-doses of aspirin (10-7 M) in astrocytes in primary culture in presence or absence of Aβ1-42 toxic peptide. We noted an increase of cell viability and proliferation with or without Aβ1-42 peptide presence in aspirin treated cells. In addition, a decrease in apoptosis, determined by Caspase 3 activity and the expression of Cyt c and Smac/Diablo, were detected. Also, aspirin diminished necrosis process (LDH levels), pro-inflammatory mediators (IL-β and TNF-α) and NF-ᴋB prot…
WIN 55,212-2, agonist of cannabinoid receptors, prevents amyloid β1-42 effects on astrocytes in primary culture
Alzheimer's disease (AD), a neurodegenerative illness involving synaptic dysfunction with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid system is implicated in physiological and physiopathological events in central nervous system (CNS), and changes in this system are related to many human diseases, including AD. However, studies on the effects of cannabinoids on astrocytes functions are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. Inflammatory and oxidative stress mediators were determined by ELISA and Western-blot techniques both in…