0000000000023733

AUTHOR

Wolfgang Quint

Observation of Spin Flips with a Single Trapped Proton

Radio-frequency induced spin transitions of one individual proton are observed for the first time. The spin quantum jumps are detected via the continuous Stern-Gerlach effect, which is used in an experiment with a single proton stored in a cryogenic Penning trap. This is an important milestone towards a direct high-precision measurement of the magnetic moment of the proton and a new test of the matter-antimatter symmetry in the baryon sector.

research product

On-line commissioning of SHIPTRAP

Abstract The on-line commissioning of the Penning-trap mass spectrometer SHIPTRAP was successfully completed with a mass measurement of holmium and erbium radionuclides produced at SHIP. A large fraction of contaminant ions created in the stopping cell was identified to originate from the buffer-gas supply system. Using a liquid nitrogen cold trap they were reduced to a tolerable amount and mass measurements of Er 147 , Er 148 , and Ho 147 with relative uncertainties of about 1 × 1 0 − 6 were performed.

research product

LC circuit mediated sympathetic cooling of a proton via image currents

Abstract Efficient cooling of trapped charged particles is essential in many fundamental physics experiments, for high-precision metrology, and for quantum technology. Until now, ion-ion coupling for sympathetic cooling or quantum state control has been limited to ion species with accessible optical transitions or has required close-range Coulomb interactions. To overcome this limitation and further develop scalable quantum control techniques, there has been a sustained desire to extend laser-cooling techniques to particles in macroscopically separated traps, opening quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions, and antimatter p…

research product

Direct limits on the interaction of antiprotons with axion-like dark matter

Astrophysical observations indicate that there is roughly five times more dark matter in the Universe than ordinary baryonic matter, with an even larger amount of the Universe's energy content due to dark energy. So far, the microscopic properties of these dark components have remained shrouded in mystery. In addition, even the five percent of ordinary matter in our Universe has yet to be understood, since the Standard Model of particle physics lacks any consistent explanation for the predominance of matter over antimatter. Inspired by these central problems of modern physics, we present here a direct search for interactions of antimatter with dark matter, and place direct constraints on th…

research product

Chapter 7 HITRAP: A Facility at GSI for Highly Charged Ions

Abstract An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fur Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.

research product

Special Relativity and the Single Antiproton: Fortyfold Improved Comparison ofp¯andpCharge-to-Mass Ratios

The measured ratio of charge-to-mass ratios for the antiproton and proton is $1.0000000015\ifmmode\pm\else\textpm\fi{}0.0000000011$. This $1$ part in ${10}^{9}$ comparison ( $1$ ppb) is possible because a single $\overline{p}$ or $p$ is now directly observed while trapped in an open access Penning trap. The comparison is the most accurate mass spectrometry of particles with opposite charge, and is the most sensitive test of $\mathrm{CPT}$ invariance for a baryon system. It is 40 times more accurate than our earlier comparison with many trapped antiprotons and protons, and is more than 45 000 times more accurate than earlier comparisons made with other techniques.

research product

A test of charge-parity-time invariance at the atto-electronvolt scale

We developed a novel fast measurement procedure for cyclotron frequency comparisons of two individual particles in a Penning trap, which enabled us to compare the charge-to-mass ratio of the proton and the antiproton with a fractional precision of 69 parts per trillion. To date this is the most precise test of charge-parity-time invariance using baryons. Our measurements were performed at cyclotron frequencies of about 30 MHz, which means that charge-parity-time symmetry holds at the atto-electronvolt scale.

research product

The g Factor of Hydrogenic Ions: A Test of Bound State QED

We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g exp = 2.001 041 596 (5). The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. Experiment and theory test the bound-state QED contributions to the gJ factor of a bound electron to a precision of 1%. We discuss also implications of the experiment on the knowledge of the electron mass.

research product

Determination of the g-Factor of Single Hydrogen-Like Ions by Mode Coupling in a Penning Trap

A method has been developed and applied for the determination of the electronic g-factor of single hydrogen-like ions stored in a Penning trap. The method is based on mode coupling of the ion trapping motions and is conceptionally advantageous as compared to previously used methods. It has been applied to hydrogen-like oxygen 16O7+ and yields a value for the gJ-factor which is in agreement with previously determined values. Experimental requirements and possibilities of the new method are discussed.

research product

New determination of the electron's mass.

A new independent value for the electron's mass in units of the atomic mass unit is presented, ${m}_{e}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0.0005485799092(4)\mathrm{u}$. The value is obtained from our recent measurement of the $g$ factor of the electron in ${}^{12}{\mathrm{C}}^{5+}$ in combination with the most recent quantum electrodynamical (QED) predictions. In the QED corrections, terms of order ${\ensuremath{\alpha}}^{2}$ were included by a perturbation expansion in $Z\ensuremath{\alpha}$. Our total precision is three times better than that of the accepted value for the electron's mass.

research product

Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

Masses of 582 neutron-deficient nuclides ($30\leq{Z}\leq{85}$) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 $\mu$u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies ($Q$-values) of $\alpha-$, $\beta-$, or proton decays. The obtained results are compared with the results of other measurements.

research product

High-precision measurement of the atomic mass of the electron

A very precise measurement of the magnetic moment of a single electron bound to a carbon nucleus, combined with a state-of-the-art calculation in the framework of bound-state quantum electrodynamics, gives a new value of the atomic mass of the electron that is more precise than the currently accepted one by a factor of 13. The atomic mass of the electron is a key parameter for fundamental physics. A precise determination is a challenge because the mass is so low. Sven Sturm and colleagues report on a new determination of the electron's mass in atomic units. The authors measured the magnetic moment of a single electron bound to a reference ion (a bare nucleus of carbon-12). The results were …

research product

Sixfold improved single particle measurement of the magnetic moment of the antiproton

Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.7928473…

research product

Status and perspectives of atomic physics research at GSI

A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei - up to a Lorentz factor of 24. At those relativistic velocities, the energies of optical transitions, such as for lasers.. are boosted into the X-ray region and the high-charge state ions generate electric and magnetic fields of exceptional strength. Together with high beam intensities a range of important experiments can be anticipated, for example electronic transitions in r…

research product

A reservoir trap for antiprotons

We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic p…

research product

Direct Measurement of the Free Cyclotron Frequency of a Single Particle in a Penning Trap

A measurement scheme for the direct determination of the free cyclotron frequency ${\ensuremath{\nu}}_{c}$ of a single particle stored in a Penning trap is described. The method is based on the dressed states of mode coupling. In this novel measurement scheme both radial modes of the single trapped particle are simultaneously coupled to the axial oscillation mode.

research product

HITRAP – a facility for experiments on heavy highly charged ions and on antiprotons

HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has be…

research product

Resolution of Single Spin Flips of a Single Proton

The spin magnetic moment of a single proton in a cryogenic Penning trap was coupled to the particle's axial motion with a superimposed magnetic bottle. Jumps in the oscillation frequency indicate spin-flips and were identified using a Bayesian analysis.

research product

A battery-based, low-noise voltage source.

A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented…

research product

High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogenlike carbon.

We present a new experimental value for the magnetic moment of the electron bound in hydrogenlike carbon (12C5+): g(exp) = 2.001 041 596 (5). This is the most precise determination of an atomic g(J) factor so far. The experiment was carried out on a single 12C5+ ion stored in a Penning trap. The high accuracy was made possible by spatially separating the induction of spin flips and the analysis of the spin direction. The current theoretical value amounts to g(th) = 2.001 041 591 (7). Together experiment and theory test the bound-state QED contributions to the g(J) factor of a bound electron to a precision of 1%.

research product

Improved limit on the directly measured antiproton lifetime

Continuous monitoring of a cloud of antiprotons stored in a Penning trap for 405 days enables us to set an improved limit on the directly measured antiproton lifetime. From our measurements we extract a storage time of $3.15\times {10}^{8}$ equivalent antiproton-seconds, resulting in a lower lifetime limit of ${\tau }_{\bar{{\rm{p}}}}\gt 10.2\,{\rm{a}}$ with a confidence level of $68 \% $. This result improves the limit on charge-parity-time violation in antiproton decays based on direct observation by a factor of 7.

research product

The magnetic moment anomaly of the electron bound in hydrogen-like oxygen16O7 

The measurement of the g-factor of the electron bound in a hydrogen-like ion is a high-accuracy test of the theory of quantum electrodynamics (QED) in strong fields. Here we report on the measurement of the g-factor of the bound electron in hydrogen-like oxygen (16O7+). In our experiment a single highly charged ion is stored in a Penning trap. The electronic spin state of the ion is monitored via the continuous Stern?Gerlach effect in a quantum non-demolition measurement. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g-factor of the bound electron is obtained by varying the micro…

research product

A single trapped antiproton and antiprotons for antihydrogen production

During the last several years, our TRAP collaboration has pioneered techniques for slowing, trapping, cooling and indefinitely storing antiprotons to energies more than 1010 times lower than previously possible. The radio signal from a single trapped antiproton is now being used for precision measurements. Many cold antiprotons are “stacked” as another important step toward the eventual production of antihydrogen, and positrons have been trapped in vacuum.

research product

Phase-sensitive measurement of trapped particle motions

We have developed and applied a novel method for the precise determination of small frequency differences of particle motions inside a Penning trap. In the present case, the frequency differences on the order of 100 mHz at motional frequencies on the order of 1 MHz are used to determine the spin state of an electron bound in a hydrogen-like ion. This novel technique measures the integrated phase difference of the particles' motions relative to an excitation with a well-defined phase. Thereby, the Fourier-limit for frequency measurements based on Fourier-analyses of detection signals can be overcome.

research product

High-precision comparison of the antiproton-to-proton charge-to-mass ratio

Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests …

research product

Highly charged ions, quantum-electrodynamics, and the electron mass

Abstract High precision experiments on the magnetic moment of hydrogen-like ions confined in a Penning trap have provided the most stringent test of bound-state quantum-electrodynamic calculations. Experiments have been performed on single C 5+ and O 7+ ions. These experiments are briefly reviewed and prospects for future improvements and extension to other systems are discussed.

research product

Double Penning trap technique for precise g factor determinations in highly charged ions

We present a detailed description of an experiment to determine the magnetic moment of an electron bound in hydrogen-like carbon. This forms a high-accuracy test of bound-state quantum electrodynamics. Special emphasis is given to the discussion of systematic uncertainties which limit our present accuracy. The described experimental setup may also be used for the determination of g factors in other highly charged ions.

research product

g Factor of Lithiumlike Silicon: New Challenge to Bound-State QED

The recently established agreement between experiment and theory for the $g$ factors of lithiumlike silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum electrodynamics (QED) effects in the presence of a magnetic field. In this Letter, we present a significant simultaneous improvement of both theoretical $g_\text{th} = 2.000\,889\,894\,4\,(34)$ and experimental $g_\text{exp} = 2.000\,889\,888\,45\,(14)$ values of the $g$ factor of lithiumlike silicon $^{28}$Si$^{11+}$. The theoretical precision now is limited by the many-electron two-loop contributions of the bound-state QED. The experimental value is accurate enough to test these contributions…

research product

Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision

Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μp of the proton in units of the nuclear magneton μN. The result, μp = 2.79284734462 (±0.00000000082) μN, has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double–Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable…

research product

Towards an Improved Measurement of the Proton Magnetic Moment

The BASE collaboration performed the most precise measurement of the proton magnetic moment. By applying the so-called double Penning-trap method with a single proton a fractional precision of 3.3 parts-per-billion was reached. This article describes the primary limitations of the last measurement and discusses improvements to reach the sub-parts-per-billion level.

research product

g-factor measurement of hydrogenlike28Si13+as a challenge to QED calculations

Using a phase-detection method to determine the cyclotron frequency of a single trapped ion in a Penning trap allowed us to perform a measurement of the $g$ factor of the bound electron in hydrogenlike ${}^{28}$Si${}^{13+}$ with a statistical uncertainty of $4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}11}$. Furthermore, we reevaluated the image-charge shift as the main source of uncertainty. Our result challenges bound-state quantum-electrodynamical calculations by probing two-loop contributions of order (Z$\ensuremath{\alpha}$)${}^{6}$ and paves the way towards a more precise determination of fundamental constants as the electron mass.

research product

HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogenlike ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at wel…

research product

Measurement of ultra-low heating rates of a single antiproton in a cryogenic Penning trap

Physical review letters 122(4), 043201 (2019). doi:10.1103/PhysRevLett.122.043201

research product

Extremely cold antiprotons for antihydrogen production

The possibility to produce, trap and study antihydrogen atoms rests upon the recent availability of extremely cold antiprotons in a Penning trap. Over the last five years, our TRAP Collaboration has slowed, cooled and stored antiprotons at energies 1010 lower than was previously possible. The storage time exceeds 3.4 months despite the extremely low energy, which corresponds to 4.2 K in temperature units. The first example of measurements which become possible with extremely cold antiprotons is a comparison of the antiproton inertial masses which shows they are the same to a fractional accuracy of 4×10−8. (This is 1000 times more accurate than previous comparisons and large additional incre…

research product

A Possible New Value for the Electron Mass from g-Factor Measurements on Hydrogen-Like Ions

The mass of the electron in atomic units (m e) represents the largest error contribution in an experiment to determine the g-factor of the electron bound in hydrogen-like carbon. Recent progress in the calculation reduces the uncertainty of the theoretical value to such a low value that m e can be determined from a comparison of experimental and theoretical g-factors. The present preliminary value of the electron mass agrees with the accepted value but reduces the uncertainty by about a factor 2.

research product

Continuous Stern–Gerlach Effect on Atomic Ions

research product

Continuous Stern–Gerlach effect and the magnetic moment of the antiproton

Abstract The measurement of the magnetic moment (or g-factor ) of the antiproton and of the proton is a sensitive test of CPT invariance. We discuss the possibility of applying the continuous Stern–Gerlach effect to detect quantum jumps between the two spin states (spin up and spin down) of the antiproton. The measurement will be performed on a single antiproton stored in a Penning trap. The g -factor of the antiproton is determined by measuring its cyclotron frequency and its spin precession frequency in the magnetic field of the trap. With the double Penning trap method the g -factor of the antiproton can be determined with an accuracy of 1 ppb.

research product

Sympathetic cooling of protons and antiprotons with a common endcap Penning trap.

We present an experiment to sympathetically cool protons and antiprotons in a Penning trap by resonantly coupling the particles to laser cooled beryllium ions using a common endcap technique. Our analysis shows that preparation of (anti)protons at mK temperatures on timescales of tens of seconds is feasible. Successful implementation of the technique will have immediate and significant impact on high-precision comparisons of the fundamental properties of protons and antiprotons. This in turn will provide some of the most stringent tests of the fundamental symmetries of the Standard Model.

research product

Observation of individual spin quantum transitions of a single antiproton

We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1% . Spin-state initialization with >99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level. We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unam…

research product

High-Precision Measurements of the Bound Electron’s Magnetic Moment

Highly charged ions represent environments that allow to study precisely one or more bound electrons subjected to unsurpassed electromagnetic fields. Under such conditions, the magnetic moment (g-factor) of a bound electron changes significantly, to a large extent due to contributions from quantum electrodynamics. We present three Penning-trap experiments, which allow to measure magnetic moments with ppb precision and better, serving as stringent tests of corresponding calculations, and also yielding access to fundamental quantities like the fine structure constant α and the atomic mass of the electron. Additionally, the bound electrons can be used as sensitive probes for properties of the …

research product

Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called "magnetic bottles" and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microw…

research product

Highly sensitive superconducting circuits at ∼700 kHz with tunable quality factors for image-current detection of single trapped antiprotons

We developed highly-sensitive image-current detection systems based on superconducting toroidal coils and ultra-low noise amplifiers for non-destructive measurements of the axial frequencies (550$\sim$800$\,$kHz) of single antiprotons stored in a cryogenic multi-Penning-trap system. The unloaded superconducting tuned circuits show quality factors of up to 500$\,$000, which corresponds to a factor of 10 improvement compared to our previously used solenoidal designs. Connected to ultra-low noise amplifiers and the trap system, signal-to-noise-ratios of 30$\,$dB at quality factors of > 20$\,$000 are achieved. In addition, we have developed a superconducting switch which allows continuous tu…

research product

Electron and positron cooling of highly charged ions in a cooler Penning trap

Abstract Electron cooling is a well-established technique to increase the phase space density of particle beams in storage rings. In this paper, we discuss the feasibility of electron and positron cooling of ions in a Penning trap. We calculate the cooling times for the cases of trapped bare ions with nuclear charge Z =1 (protons), Z =36 (krypton) and Z =92 (uranium) with the Spitzer formula. Our calculations show that for typical experimental conditions the time for cooling from initial energies of 10 keV per charge down to rest is in the order of a second. We investigate the dependence of the cooling time on the number of ions and electrons, and their charge and mass.

research product

Constraints on the Coupling between Axionlike Dark Matter and Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryogenic Penning Trap

We constrain the coupling between axionlike particles (ALPs) and photons, measured with the superconducting resonant detection circuit of a cryogenic Penning trap. By searching the noise spectrum of our fixed-frequency resonant circuit for peaks caused by dark matter ALPs converting into photons in the strong magnetic field of the Penning-trap magnet, we are able to constrain the coupling of ALPs with masses around $2.7906-2.7914\,\textrm{neV/c}^2$ to $g_{a\gamma}< 1 \times 10^{-11}\,\textrm{GeV}^{-1}$. This is more than one order of magnitude lower than the best laboratory haloscope and approximately 5 times lower than the CERN axion solar telescope (CAST), setting limits in a mass and cou…

research product

Observation of the Continuous Stern-Gerlach Effect on an Electron Bound in an Atomic Ion

We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.

research product

Isotope dependence of the Zeeman effect in lithium-like calcium

The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions an…

research product

Study of Basic Nuclear Properties of Highly-Charged, Unstable Nuclei at the SIS-FRS-ESR Complex

Recent progress in experiments with exotic nuclear beams at the SIS-FRS-ESR facility is summarized. New results on gross properties of exotic nuclei like binding energy, half-lives, and decay modes are presented. A brief outlook to future experiments is given.

research product

High-precision measurement of the proton's atomic mass

We report on the precise measurement of the atomic mass of a single proton with a purpose-built Penning-trap system. With a precision of 32 parts-per-trillion our result not only improves on the current CODATA literature value by a factor of three, but also disagrees with it at a level of about 3 standard deviations.

research product

The g-factor of the Electron Bound in Hydrogen-like Ions

The experimental determination of the magnetic moment (g-factor) of the electron bound in hydrogen-like ions represents a clean test of Quantum Electrodynamics, because it is not very sensitive to nuclear structure effects. Experimental data on the g-factor of the bound electron are available only for the hydrogen atom and the 4He+-ion. In this paper we present the first result for the g-factor of hydrogen-like carbon (12C5+). The experimental accuracy is high enough to verify the relativistic contribution to the g-factor on the 10-3 level.

research product

Measurement of the g Factor of the Bound Electron in Hydrogen-like Oxygen 16O7+

The measurement of the g factor of the electron bound in a hydrogen-like ion is a high- accuracy test of the theory of Quantum Electrodynamics (QED) in strong fields. Here we report on the measurement of the g factor of the bound electron in hydrogen-like oxygen 16O7+. In our experiment a single 16O7+ ion is stored in a Penning trap. Quantum jumps between the two spin states (spin up and spin down) are induced by a microwave field at the spin precession frequency of the bound electron. The g factor of the bound electron is obtained by varying the microwave frequency and counting the number of spin flips. Our experimental value for the g factor of the bound electron is gexp(16O7+) = 2.000 04…

research product

Improved comparison of bar P and P charge-to-mass ratios

The measured ratio of charge-to-mass ratios for the antiproton and proton is 1.000 000 001 5 ± 0.000 000 001 1. This 1 part in 109 comparison (1 ppb) is possible because a single or p is now directly observed while trapped in an open access Penning trap. The comparison is the most accurate mass spectrometry of particles with opposite charge and is the most sensitive test of CPT invariance for a baryon system. It is 40 times more accurate than our earlier comparison with many trapped antiprotons and protons, and is more than 45 000 times more accurate than earlier comparisons made with other techniques.

research product

Precision studies in traps: Measurement of fundamental constants and tests of fundamental theories

Experiments on single atomic particles confined in Penning ion traps have contributed significantly to the improvements of fundamental constants and to tests of the theory of Quantum Electrodynamics for free and bound electrons. The most precise value of the fine structure constant as well as the electron mass have been derived from trap experiments. Numerous atomic masses of interest for fundamental questions have been determined with precisions of 10 � 9 or below. Further progress is envisaged in the near future.

research product

Towards electronic g-factor measurements in medium-heavy hydrogen-like and lithium-like ions

Abstract Measurements of the anomalous magnetic moment of the electron bound in hydrogen-like ions with spinless nuclei have proven to be highly sensitive tests of corresponding calculations based on bound-state quantum electrodynamics. Measurements performed on H-like carbon 12C5+ and oxygen 16O7+ together with bound-state QED calculations on the same level of accuracy have achieved sensitivities around 0.25% of the QED bound state contributions to the calculated electronic g-factors of these ions. Currently, a similar experiment on hydrogen-like calcium 40Ca19+, lithium-like calcium 40Ca17+ and other medium-heavy ions is being prepared, which is capable of increasing this sensitivity on t…

research product

Direct high-precision measurement of the magnetic moment of the proton

The spin-magnetic moment of the proton $\mu_p$ is a fundamental property of this particle. So far $\mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement…

research product

Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton

Physical review applied 12(4), 044012 (2019). doi:10.1103/PhysRevApplied.12.044012

research product

ElectronicgFactor of Hydrogenlike OxygenO7+16

We present an experimental value for the $g$ factor of the electron bound in hydrogenlike oxygen, which is found to be ${g}_{\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{t}}=2.000\text{ }047\text{ }025\text{ }4\text{ }(15)(44)$. The experiment was performed on a single $^{16}\mathrm{O}^{7+}$ ion stored in a Penning trap. For the first time, the expected line shape of the $g$-factor resonance is calculated which is essential for minimizing the systematic uncertainties. The measurement agrees within $1.1\text{ }\ensuremath{\sigma}$ with the predicted theoretical value ${g}_{\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}}=2.000\text{ }047\text{ }020\text{ }2\text{ }(6)$. It represents a…

research product

Image charge shift in high-precision Penning traps

An ion in a Penning trap induces image charges on the surfaces of the trap electrodes. These induced image charges are used to detect the ion's motional frequencies, but they also create an additional electric field, which shifts the free-space cyclotron frequency typically at a relative level of several ${10}^{\ensuremath{-}11}$. In various high-precision Penning-trap experiments, systematics and their uncertainties are dominated by this so-called image charge shift (ICS). The ICS is investigated in this work by a finite-element simulation and by a dedicated measurement technique. Theoretical and experimental results are in excellent agreement. The measurement is using singly stored ions a…

research product

Sympathetic cooling of a trapped proton mediated by an LC circuit

Efficient cooling of trapped charged particles is essential to many fundamental physics experiments1,2, to high-precision metrology3,4 and to quantum technology5,6. Until now, sympathetic cooling has required close-range Coulomb interactions7,8, but there has been a sustained desire to bring laser-cooling techniques to particles in macroscopically separated traps5,9,10, extending quantum control techniques to previously inaccessible particles such as highly charged ions, molecular ions and antimatter. Here we demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps. The traps are connected by a superconducting LC circuit that enable…

research product

Status of the SHIPTRAP Project: A Capture and Storage Facility for Heavy Radionuclides from SHIP

The ion trap facility SHIPTRAP is being set up to deliver very clean and cool beams of singly-charged recoil ions produced at the SHIP velocity filter at GSI Darmstadt. SHIPTRAP consists of a gas cell for stopping and thermalizing high-energy recoil ions from SHIP, an rf ion guide for extraction of the ions from the gas cell, a linear rf trap for accumulation and bunching of the ions, and a Penning trap for isobaric purification. The progress in testing the rf ion guide is reported. A transmission of about 93(5)% was achieved.

research product

Observing a single trapped antiproton

research product

The quality factor of a superconducting rf resonator in a magnetic field.

The quality factor of a superconducting NbTi resonator at 1.6 MHz in a magnetic field up to 1.2 T as well as its temperature dependence is investigated. A hysteresis effect in the superconducting surface resistance as a function of the magnetic field is observed. An unloaded Q-value of the resonator of 40,500 is achieved at 3.9 K. It is shown that this Q-value is limited by dielectric losses in the FORMVAR insulation of the coils wire. The details of the Q-value optimization are discussed. In the temperature dependence of the Q-value a steep decrease is observed above T approximately = 7.5 K. Finally, the implications of these measurements for real trap experiments are discussed in detail.

research product

Measurement of the gj factor of hydrogenic ions: a sensitive test of bound state QED

Thegj factor measurement of hydrogenic ions in the 1s ground state is with an expected accuracy of 10−7 a sensitive test of bound state QED. We expect to determine the deviations from the free electron value, caused by relativistic and radiative corrections, up to the orderα/4π(Zα)2 with an accuracy of 1%. As a first step, light ions like C5+ will be investigated. Later on, heavier hydrogenic ions up to U91+ will be examined using the accelerator facilities at GSI in Darmstadt.

research product

Towards a direct measurement of the g-factor of a single isolated protonThis paper was presented at the International Conference on Precision Physics of Simple Atomic Systems, held at École de Physique, les Houches, France, 30 May–4 June, 2010.

Our Penning trap experiment aims at a direct high-precision measurement of the proton g-factor. We present the experimental setup and the measurement technique using the continuous Stern-Gerlach effect. Recent test measurements with a single proton stored in a Penning trap with a strong magnetic bottle and a new toroidal detection system are discussed. For a stringent test of the CPT symmetry the described technique can also be applied to the antiproton.

research product

Demonstration of the double Penning Trap technique with a single proton

Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…

research product

Determination of the electron’s mass from g -factor experiments on 12 C 5+ and 16 O 7+

Abstract We present a derivation of the electron’s mass from our experiment on the electronic g factor in 12C5+ and 16O7+ together with the most recent quantum electrodynamical predictions. The value obtained from 12C5+ is me=0.0005485799093(3) u, that from oxygen is me=0.0005485799092(5) u. Both values agree with the currently accepted one within 1.5 standard deviations but are four respectively two-and-a-half times more precise. The contributions to the uncertainties of our values and perspectives for the determination of the fine-structure constant α by an experiment on the bound-electron g factor are discussed.

research product

High-precision mass spectrometer for light ions

The precise knowledge of the atomic masses of light atomic nuclei, e.g. the proton, deuteron, triton and helion, is of great importance for several fundamental tests in physics. However, the latest high-precision measurements of these masses carried out at different mass spectrometers indicate an inconsistency of five standard deviations. To determine the masses of the lightest ions with a relative precision of a few parts per trillion and investigate this mass problem a cryogenic multi-Penning trap setup, LIONTRAP (Light ION TRAP), was constructed. This allows an independent and more precise determination of the relevant atomic masses by measuring the cyclotron frequency of single trapped …

research product

A parts-per-billion measurement of the antiproton magnetic moment

The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.0…

research product

How to measure nuclear ground-state properties in simple systems such as 11Li or U91+?

Abstract Atomic spectroscopy yields key information on properties of ground and isomeric states via a determination of the hyperfine structure and isotope shift. In order to deduce precise nuclear moments and charge radii, the electromagnetic fields produced by the electrons at the site of the nucleus must be known with high accuracy. This is presently possible only for simple systems with very few electrons. This contribution describes two scenarios for such experiments: the determination of the charge radius of the neutron-rich isotopes 8,9Li and of the halo nucleus 11Li at the on-line isotope separators at GSI and TRIUMF and the Highly charged Ion TRAP (HITRAP) facility which is under co…

research product

gFactor of HydrogenlikeSi13+28

We determined the experimental value of the $g$ factor of the electron bound in hydrogenlike $^{28}\mathrm{Si}^{13+}$ by using a single ion confined in a cylindrical Penning trap. From the ratio of the ion's cyclotron frequency and the induced spin flip frequency, we obtain $g=1.995\text{ }348\text{ }958\text{ }7(5)(3)(8)$. It is in excellent agreement with the state-of-the-art theoretical value of 1.995 348 958 0(17), which includes QED contributions up to the two-loop level of the order of $(Z\ensuremath{\alpha}{)}^{2}$ and $(Z\ensuremath{\alpha}{)}^{4}$ and represents a stringent test of bound-state quantum electrodynamics calculations.

research product