GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences
The LIGO Scientific and Virgo Collaborations have announced the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star background will add to the background from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude $\Omega_{\rm…
New Types of Jacobian-Free Approximate Riemann Solvers for Hyperbolic Systems
We present recent advances in PVM (Polynomial Viscosity Matrix) methods based on internal approximations to the absolute value function. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Moreover, they can be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems with complex Jacobians, as the relativistic magnetohydrodynamics (RMHD) equations. The proposed solvers have also been extended to the case of approximate DOT (Dumbser-Osher-Toro) methods, which can be regarded as simple and efficient approximations to the classical Osher-Solomon method. Som…
A note on the closed graph theorem
A Flux-Split Algorithm Applied to Relativistic Flows
The equations of RFD can be written as a hyperbolic system of conservation laws by choosing an appropriate vector of unknowns. We give an explicit formulation of the full spectral decomposition of the Jacobian matrices associated with the fluxes in each spatial direction, which is the essential ingredient of the techniques we propose in this paper. These techniques are based on the recently derived flux formula of Marquina, a new way to compute the numerical flux at a cell interface which leads to a conservative, upwind numerical scheme. Using the spectral decompositions in a fundamental way, we construct high order versions of the basic first-order scheme described by R. Donat and A. Marqu…
All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems
Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…
Classification of gravitational-wave glitches via dictionary learning
We present a new method for the classification of transient noise signals (or glitches) in advanced gravitational-wave interferometers. The method uses learned dictionaries (a supervised machine learning algorithm) for signal denoising, and untrained dictionaries for the final sparse reconstruction and classification. We use a data set of 3000 simulated glitches of three different waveform morphologies, comprising 1000 glitches per morphology. These data are embedded in non-white Gaussian noise to simulate the background noise of advanced LIGO in its broadband configuration. Our classification method yields a 96% accuracy for a large range of initial parameters, showing that learned diction…
Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…
Jacobian-Free Incomplete Riemann Solvers
The purpose of this work is to present some recent developments about incomplete Riemann solvers for general hyperbolic systems. Polynomial Viscosity Matrix (PVM) methods based on internal approximations to the absolute value function are introduced, and they are compared with Chebyshev-based PVM solvers. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Moreover, they can be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems for which the Jacobians involve complex expressions. Some numerical experiments involving the relativistic magnetohydrodyn…
Equilibrium real gas computations using Marquina's scheme
Marquina's approximate Riemann solver for the compressible Euler equations for gas dynamics is generalized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems in one and two space dimensions show the desired accuracy and robustness
Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs
We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…
All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run
Made available in DSpace on 2018-11-26T17:45:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-22 Australian Research Council Council of Scientific and Industrial Research of India Department of Science and Technology, India Science AMP; Engineering Research Board (SERB), India Ministry of Human Resource Development, India Spanish Agencia Estatal de Investigacion Vicepresidencia i Conselleria d'Innovacio, Recerca i Turisme Conselleria d'Educacio i Universitat del Govern de les Illes Balears Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana National Science Centre of Poland Swiss National Science Foundation (SNSF) Russian Foundation for Basic Rese…
A time evolution model for total-variation based blind deconvolution
Departamento Matematica Aplicada, Universidad de Valencia, Burjassot 46100, Spain.We propose a time evolution model for total-variation based blind deconvolution consisting of two evolution equations evolv-ing the signal by means of a nonlinear scale space method and the kernel by using a diffusion equation starting from the zerosignal and a delta function respectively. A preliminary numerical test consisting of blind deconvolution of a noiseless blurredimage is presented.
Total-variation methods for gravitational-wave denoising: Performance tests on Advanced LIGO data
We assess total-variation methods to denoise gravitational-wave signals in real noise conditions, by injecting numerical-relativity waveforms from core-collapse supernovae and binary black hole mergers in data from the first observing run of Advanced LIGO. This work is an extension of our previous investigation where only Gaussian noise was used. Since the quality of the results depends on the regularization parameter of the model, we perform an heuristic search for the value that produces the best results. We discuss various approaches for the selection of this parameter, either based on the optimal, mean, or multiple values, and compare the results of the denoising upon these choices. Mor…
A flux-split algorithm applied to conservative models for multicomponent compressible flows
In this paper we consider a conservative extension of the Euler equations for gas dynamics to describe a two-component compressible flow in Cartesian coordinates. It is well known that classical shock-capturing schemes applied to conservative models are oscillatory near the interface between the two gases. Several authors have addressed this problem proposing either a primitive consistent algorithm [J. Comput. Phys. 112 (1994) 31] or Lagrangian ingredients (Ghost Fluid Method by Fedkiw et al. [J. Comput. Phys. 152 (1999) 452] and [J. Comput. Phys. 169 (2001) 594]). We solve directly this conservative model by a flux-split algorithm, due to the first author (see [J. Comput. Phys. 125 (1996) …
FAST EDGE-FILTERED IMAGE UPSAMPLING.
We present a novel edge preserved interpolation scheme for fast upsampling of natural images. The proposed piecewise hyperbolic operator uses a slope-limiter function that conveniently lends itself to higher-order approximations and is responsible for restricting spatial oscillations arising due to the edges and sharp details in the image. As a consequence the upsampled image not only exhibits enhanced edges, and discontinuities across boundaries, but also preserves smoothly varying features in images. Experimental results show an improvement in the PSNR compared to typical cubic, and spline-based interpolation approaches.
Anomalous dynamics triggered by a non-convex equation of state in relativistic flows
The non-monotonicity of the local speed of sound in dense matter at baryon number densities much higher than the nuclear saturation density ($n_0 \approx 0.16\,$fm$^{-3}$) suggests the possible existence of a non-convex thermodynamics which will lead to a non-convex dynamics. Here, we explore the rich and complex dynamics that an equation of state (EoS) with non-convex regions in the pressure-density plane may develop as a result of genuinely relativistic effects, without a classical counterpart. To this end, we have introduced a phenomenological EoS, whose parameters can be restricted heeding to causality and thermodynamic stability constraints. This EoS shall be regarded as a toy-model wi…
Synthesis of Monodisperse Spherical Nanocrystals
Nanoparticles, small units of matter with dimensions in the range 1-100 nm, exhibit many advantageous size-dependent magnetic, electrical, chemical and optical prop- erties, which are not observed at the microscale or bulk. These properties are extremely sensitive to particle size, and thus the ability to produce monodisperse particles is critical. Due to its ease of use and flexibility, precipitation of nanoparticles from solution is one of the most widely used synthesis methods. The main disadvantage of this method is that the relationship between particle growth and system conditions is not fully understood. In practice, the optimal reaction conditions are usually ascertained empirically…
Multiframe image restoration in the presence of noisy blur kernel
We wish to recover an original image u from several blurry-noisy versions f k , called frames. We assume a more severe degradation model, in which the image u has been blurred by a noisy (stochastic) point spread function. We consider the problem of restoring the degraded image in a variational framework. Since the recovery of u from one single frame f is a highly ill-posed problem, we formulate two minimization problems based on the multiframe approach proposed for image super-resolution by Marquina-Osher [13]. Several experimental results for image restoration are shown, illustrating that the proposed models give visually satisfactory results.
Tests of General Relativity with GW170817
The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…
Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)
Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…
Status of Advanced Virgo
The LIGO and the Virgo collaborations have recently announced the first detections of Gravitational Waves. Due to their weak amplitude, Gravitational Waves are expected to produce a very small effect on free-falling masses, which undergo a displacement of the order of 10-18 m for a Km-scale mutual distance. This discovery showed that interferometric detectors are suitable to reveal such a feeble effect, and therefore represent a new tool for astronomy, astrophysics and cosmology in the understanding of the Universe. To better reconstruct the position of the Gravitational Wave source and increase the signal-to-noise ratio of the events by means of multiple coincidence, a network of detectors…
Computation of travelling wave solutions of scalar conservation laws with a stiff source term
Abstract In this paper we propose a nonoscillatory numerical technique to compute the travelling wave solution of scalar conservation laws with a stiff source term. This procedure is based on the dynamical behavior described by the associated stationary ODE and it reduces/avoids numerical errors usually encountered with these problems, i.e., spurious oscillations and incorrect wave propagation speed. We combine this treatment with either the first order Lax–Friedrichs scheme or the second order Nessyahu–Tadmor scheme. We have tested several model problems by LeVeque and Yee for which the stiffness coefficient can be increased. We have also tested a problem with a nonlinear flux and a discon…
Denoising of gravitational wave signals via dictionary learning algorithms
Gravitational wave astronomy has become a reality after the historical detections accomplished during the first observing run of the two advanced LIGO detectors. In the following years, the number of detections is expected to increase significantly with the full commissioning of the advanced LIGO, advanced Virgo and KAGRA detectors. The development of sophisticated data analysis techniques to improve the opportunities of detection for low signal-to-noise-ratio events is, hence, a most crucial effort. In this paper, we present one such technique, dictionary-learning algorithms, which have been extensively developed in the last few years and successfully applied mostly in the context of image…
Power ENO methods: a fifth-order accurate Weighted Power ENO method
In this paper we introduce a new class of ENO reconstruction procedures, the Power ENO methods, to design high-order accurate shock capturing methods for hyperbolic conservation laws, based on an extended class of limiters, improving the behavior near discontinuities with respect to the classical ENO methods. Power ENO methods are defined as a correction of classical ENO methods [J. Comput. Phys. 71 (1987) 231], by applying the new limiters on second-order differences or higher. The new class of limiters includes as a particular case the minmod limiter and the harmonic limiter used for the design of the PHM methods [see SIAM J. Sci. Comput. 15 (1994) 892]. The main features of these new ENO…
A New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal
In this paper we summarize the main features of a new time dependent model to approximate the solution to the nonlinear total variation optimization problem for deblurring and noise removal introduced by Rudin, Osher and Fatemi. Our model is based on level set motion whose steady state is quickly reached by means of an explicit procedure based on an ENO Hamilton-Jacobi version of Roe's scheme. We show numerical evidence of the speed, resolution and stability of this simple explicit procedure in two representative 1D and 2D numerical examples.
Split Bregman Method for Gravitational Wave Denoising
This paper presents a progress report in our aim to develop a Total Variation algorithm for denoising of gravitational waves. These algorithms, are routinely employed in the context of image processing and they do not need any a priori information on the signals. We apply our method to two different types of numerically-simulated gravitational wave signals, namely burst produced from the core collapse of rotating stars and waveforms from binary black hole mergers, and present a preliminary assessment of its capabilities.
Variational multiframe restoration of images degraded by noisy (stochastic) blur kernels
This article introduces and explores a class of degradation models in which an image is blurred by a noisy (stochastic) point spread function (PSF). The aim is to restore a sharper and cleaner image from the degraded one. Due to the highly ill-posed nature of the problem, we propose to recover the image given a sequence of several observed degraded images or multiframes. Thus we adopt the idea of the multiframe approach introduced for image super-resolution, which reduces distortions appearing in the degraded images. Moreover, we formulate variational minimization problems with the robust (local or nonlocal) L^1 edge-preserving regularizing energy functionals, unlike prior works dealing wit…
A note on the Bregmanized Total Variation and dual forms
This paper considers two approaches to perform image restoration while preserving the contrast. The first one is the Total Variation-based Bregman iterations while the second consists in the minimization of an energy that involves robust edge preserving regularization. We show that these two approaches can be derived form a common framework. This allows us to deduce new properties and to extend and generalize these two previous approaches.
Capturing Shock Reflections: An Improved Flux Formula
Godunov type schemes, based on exact or approximate solutions to the Riemann problem, have proven to be an excellent tool to compute approximate solutions to hyperbolic systems of conservation laws. However, there are many instances in which a particular scheme produces inappropriate results. In this paper we consider several situations in which Roe's scheme gives incorrect results (or blows up all together) and we propose an alternative flux formula that produces numerical approximations in which the pathological behavior is either eliminated or reduced to computationally acceptable levels.
GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙
LIGO Scientific Collaboration and Virgo Collaboration: et al.
Advanced Virgo Status
Abstract The detection of a gravitational wave signal in September 2015 by LIGO interferometers, announced jointly by LIGO collaboration and Virgo collaboration in February 2016, opened a new era in Astrophysics and brought to the whole community a new way to look at - or “listen” to - the Universe. In this regard, the next big step was the joint observation with at least three detectors at the same time. This configuration provides a twofold benefit: it increases the signal-to-noise ratio of the events by means of triple coincidence and allows a narrower pinpointing of GW sources, and, in turn, the search for Electromagnetic counterparts to GW signals. Advanced Virgo (AdV) is the second ge…
Neutron star collapse and gravitational waves with a non-convex equation of state
The thermodynamical properties of the equation of state (EoS) of high-density matter (above nuclear saturation density) and the possible existence of exotic states such as phase transitions from nuclear/hadronic matter into quark-gluon plasma, or the appearance of hyperons, may critically influence the stability and dynamics of compact relativistic stars. From a theoretical point of view, establishing the existence of those states requires the analysis of the `convexity' of the EoS. We show indications of the existence of regions in the dense-matter EoS where the thermodynamics may be non-convex as a result of a non-monotonic dependence of the sound speed with the rest-mass density. When th…
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …
GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence
On August 14, 2017 at 10 30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5-3.0+5.7M and 25.3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 540-210+130 Mpc, corresponding to a redshift of z=0.11-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible regio…
Constraining the p -Mode– g -Mode Tidal Instability with GW170817
We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…
Denoising of MR spectroscopy signals using total variation and iterative Gauss-Seidel gradient updates
We present a fast variational approach for denoising signals from magnetic resonance spectroscopy (MRS). Differently from the TV approaches applied to denoising of images, this is the first time to our knowledge that it has been used for the processing of free induction decay signals from single-voxel spectroscopy (SVS) acquisitions. Another novelty in this study is the direct use of the Euler Lagrange formulation coupled with Gauss Seidel gradient updates to improve the speed of iteration and reduce ringing. Results from brain MRS signals show improvement in signal to noise ratio as well as reduction in estimation error in the quantification of metabolites.
The advanced Virgo longitudinal control system for the O2 observing run
Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …
Capturing blast waves in granular flow
Abstract In this paper we continue the analysis of compressible Euler equations for inelastic granular gases described by a granular equation of state due to Goldshtein and Shapiro [Goldshtein A, Shapiro M. Mechanics of collisional motion of granular materials. Part 1: General hydrodynamic equations. J Fluid Mech 1995;282:75–114], and an energy loss term accounting for inelastic collisions. We study the hydrodynamics of blast waves in granular gases by means of a fifth-order accurate scheme that resolves the evolution under different restitution coefficients. We have observed and analyzed the formation of a cluster region near the contact wave using the one-dimensional and two-dimensional v…
Computing Strong Shocks in Ultrarelativistic Flows: A Robust Alternative
In recent years, shock capturing methods have started to be used in numerical simulations in Relativistic Fluid Dynamics (RFD). These techniques lead to explicit numerical codes that are able to successfully simulate the extreme conditions of the ultrarelativistic regime. After [2], an explicit, ready-to-use description of the full spectral decomposition of the Jacobian matrices of the RFD system is available, and this allows us to implement Marquina’s scheme [3] in RFD. The scheme is seen to maintain the good behavior shown in [3] with respect to certain numerical pathologies.
Blind deconvolution using TV regularization and Bregman iteration
In this paper we formulate a new time dependent model for blind deconvolution based on a constrained variational model that uses the sum of the total variation norms of the signal and the kernel as a regularizing functional. We incorporate mass conservation and the nonnegativity of the kernel and the signal as additional constraints. We apply the idea of Bregman iterative regularization, first used for image restoration by Osher and colleagues [S.J. Osher, M. Burger, D. Goldfarb, J.J. Xu, and W. Yin, An iterated regularization method for total variation based on image restoration, UCLA CAM Report, 04-13, (2004)]. to recover finer scales. We also present an analytical study of the model disc…
Anomalous wave structure in magnetized materials described by non-convex equations of state
Agraïments: Institute for Pure and Applied Mathematics (UCLA) 2012 program on "Computational Methods in High Energy Density Plasmas. We analyze the anomalous wave structure appearing in flow dynamics under the influence of magnetic field in materials described by non-ideal equations of state. We consider the system of magnetohydrodynamics equations closed by a general equation of state (EOS) and propose a complete spectral decomposition of the fluxes that allows us to derive an expression of the nonlinearity factor as the mathematical tool to determine the nature of the wave phenomena. We prove that the possible formation of non-classical wave structure is determined by both the thermodynam…
Incomplete Riemann Solvers Based on Functional Approximations to the Absolute Value Function
We give an overview on the work developed in recent years about certain classes of incomplete Riemann solvers for hyperbolic systems. These solvers are based on polynomial or rational approximations to |x|, and they do not require the knowledge of the complete eigenstructure of the system, but only a bound on the maximum wave speed. Our solvers can be readily applied to nonconservative hyperbolic systems, by following the theory of path-conservative schemes. In particular, this allows for an automatic treatment of source or coupling terms in systems of balance laws. The properties of our schemes have been tested with some challenging numerical experiments involving systems such as the Euler…
Total-variation-based methods for gravitational wave denoising
We describe new methods for denoising and detection of gravitational waves embedded in additive Gaussian noise. The methods are based on Total Variation denoising algorithms. These algorithms, which do not need any a priori information about the signals, have been originally developed and fully tested in the context of image processing. To illustrate the capabilities of our methods we apply them to two different types of numerically-simulated gravitational wave signals, namely bursts produced from the core collapse of rotating stars and waveforms from binary black hole mergers. We explore the parameter space of the methods to find the set of values best suited for denoising gravitational wa…
High order accurate shock capturing schemes for two-component Richtmyer-Meshkov instabilities in compressible magnetohydrodynamics
We design a conservative and entropy satisfying numerical scheme to perform numerical simulations of two component Richtmyer-Meshkov (RM) instabilities in compressible magnetohydrodynamics (MHD). We first formulate a conservative model of a two-component compressible MHD fluid ruled under two ideal gases with different adiabatic exponents. The formulation includes a level set function that allows to evolve the two components of the plasma in a conservative and consistent way. We present a set of examples including two-component Riemann problems and high Mach shock wave interactions with entropy contact waves that validate the high order accurate numerical scheme. We observe that turbulent r…
The Numerical Simulation of Relativistic Fluid Flow with Strong Shocks
In this review we present and analyze the performance of a Go-dunov type method applied to relativistic fluid flow. Our model equations are the corresponding Euler equations for special relativistic hydrodynamics. By choosing an appropriate vector of unknowns, the equations of special relativistic fluid dynamics (RFD) can be written as a hyperbolic system of conservation laws. We give a complete description of the spectral decomposition of the Jacobian matrices associated to the fluxes in each spatial direction, (see (Donat et al., 1998), for details), which is the essential ingredient of the Godunov-type numerical method we propose in this paper. We also review a numerical flux formula tha…
All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data
We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …
GW190412: Observation of a binary-black-hole coalescence with asymmetric masses
LIGO Scientific Collaboration and Virgo Collaboration: et al.
Shock-capturing schemes: high accuracy versus total-variation boundedness
In this reseach work we analyze the total variation growth of some high order accurate reconstruction procedures used for the design of shock capturing schemes. This study allows to measure how oscillatory a high order accurate method is in terms of the basic elementary function chosen to increase the order of accuracy. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Afternotes on PHM: Harmonic ENO Methods
PHM methods have been used successfully as reconstruction procedures to design high-order Riemann solvers for nonlinear scalar and systems of conservation laws, (see [8], [1], [4]). We introduce a new class of polynomial reconstruction procedures based on the harmonic mean of the absolute values of finite diferences used as difference-limiter, following the original idea used before to design the piecewise hyperbolic method, introduced in [8]. We call those methods ’harmonic ENO methods’, (HENO). Furthermore, we give analytical and numerical evidence of the good behavior of these methods used as reconstruction procedures for the numerical approximation by means of shock-capturing methods fo…
Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars
We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…
Explicit Algorithms for a New Time Dependent Model Based on Level Set Motion for Nonlinear Deblurring and Noise Removal
In this paper we formulate a time dependent model to approximate the solution to the nonlinear total variation optimization problem for deblurring and noise removal introduced by Rudin and Osher [ Total variation based image restoration with free local constraints, in Proceedings IEEE Internat. Conf. Imag. Proc., IEEE Press, Piscataway, NJ, (1994), pp. 31--35] and Rudin, Osher, and Fatemi [ Phys. D, 60 (1992), pp. 259--268], respectively. Our model is based on level set motion whose steady state is quickly reached by means of an explicit procedure based on Roe's scheme [ J. Comput. Phys., 43 (1981), pp. 357--372], used in fluid dynamics. We show numerical evidence of the speed of resolution…
Approximate Osher–Solomon schemes for hyperbolic systems
This paper is concerned with a new kind of Riemann solvers for hyperbolic systems, which can be applied both in the conservative and nonconservative cases. In particular, the proposed schemes constitute a simple version of the classical Osher-Solomon Riemann solver, and extend in some sense the schemes proposed in Dumbser and Toro (2011) 19,20. The viscosity matrix of the numerical flux is constructed as a linear combination of functional evaluations of the Jacobian of the flux at several quadrature points. Some families of functions have been proposed to this end: Chebyshev polynomials and rational-type functions. Our schemes have been tested with different initial value Riemann problems f…
Denoising of gravitational-wave signal GW150914 via total-variation methods
We apply a regularized Rudin-Osher-Fatemi total variation (TV) method to denoise the transient gravitational wave signal GW150914. We have previously applied TV techniques to denoise numerically generated grav- itational waves embedded in additive Gaussian noise, obtaining satisfactory results irrespective of the signal morphology or astrophysical origin. We find that the non-Gaussian, non-stationary noise from the gravitational wave event GW150914 can also be successfully removed with TV-denoising methods. The quality of the de- noised waveform is comparable to that obtained with the Bayesian approach used in the discovery paper [1]. TV-denoising techniques may thus offer an additional via…
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…
MRI resolution enhancement using total variation regularization
We propose a novel method for resolution enhancement for volumetric images based on a variational-based reconstruction approach. The reconstruction problem is posed using a deconvolution model that seeks to minimize the total variation norm of the image. Additionally, we propose a new edge-preserving operator that emphasizes and even enhances edges during the up-sampling and decimation of the image. The edge enhanced reconstruction is shown to yield significant improvement in resolution, especially preserving important edges containing anatomical information. This method is demonstrated as an enhancement tool for low-resolution, anisotropic, 3D brain MRI images, as well as a pre-processing …
A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo
This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s-1 Mpc-1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s-1 Mpc-1. A significant …
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…
The convergence of the perturbed Newton method and its application for ill-conditioned problems
Abstract Iterative methods, such as Newton’s, behave poorly when solving ill-conditioned problems: they become slow (first order), and decrease their accuracy. In this paper we analyze deeply and widely the convergence of a modified Newton method, which we call perturbed Newton, in order to overcome the usual disadvantages Newton’s one presents. The basic point of this method is the dependence of a parameter affording a degree of freedom that introduces regularization. Choices for that parameter are proposed. The theoretical analysis will be illustrated through examples.
Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run
We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). N…
Fronts propagating with signal dependent speed in limited diffusion and related Hamilton-Jacobi formulations
We consider a class of limited diffusion equations and explore the formation of diffusion fronts as the result of a combination of diffusive and hyperbolic transport. We analyze a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion coefficient that depends on the unknown and on the gradient of the unknown. We explore the main features of the solution of the Hamilton-Jacobi equations that contain shocks and propose a suitable numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We analyze three model problems covering d…
Morphology and Dynamics of Relativistic Jets
We present a comprehensive analysis of the morphology and dynamics of relativistic pressure-matched axisymmetric jets. The numerical simulations have been carried out with a high-resolution shock-capturing hydrocode based on an approximate relativistic Riemann solver derived from the spectral decomposition of the Jacobian matrices of relativistic hydrodynamics. We discuss the dependence of the jet morphology on several parameters, paying special attention to the relativistic effects caused by high Lorentz factors and large internal energies of the beam flow. The parameter space of our analysis is spanned by the ratio of the beam and ambient medium rest mass density (η), the beam Mach number…
Application of dictionary learning to denoise LIGO’s blip noise transients
Data streams of gravitational-wave detectors are polluted by transient noise features, or ``glitches,'' of instrumental and environmental origin. In this work we investigate the use of total variation methods and learned dictionaries to mitigate the effect of those transients in the data. We focus on a specific type of transient, ``blip" glitches, as this is the most common type of glitch present in the LIGO detectors and their waveforms are easy to identify. We randomly select 100 blip glitches scattered in the data from advanced LIGO's O1 run, as provided by the citizen-science project Gravity Spy. Our results show that dictionary-learning methods are a valid approach to model and subtrac…
Capturing shock waves in inelastic granular gases
Shock waves in granular gases generated by hitting an obstacle at rest are treated by means of a shock capturing scheme that approximates the Euler equations of granular gas dynamics with an equation of state (EOS), introduced by Goldshtein and Shapiro [J. Fluid Mech. 282 (1995) 75-114], that takes into account the inelastic collisions of granules. We include a sink term in the energy balance to account for dissipation of the granular motion by collisional inelasticity, proposed by Haff [J. Fluid Mech. 134 (1983) 401-430], and the gravity field added as source terms. We have computed the approximate solution to a one-dimensional granular gas falling on a plate under the acceleration of grav…
Jacobian-free approximate solvers for hyperbolic systems: Application to relativistic magnetohydrodynamics
Abstract We present recent advances in PVM (Polynomial Viscosity Matrix) methods based on internal approximations to the absolute value function, and compare them with Chebyshev-based PVM solvers. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Another important feature of the proposed methods is that they are suitable to be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems for which the Jacobians involve complex expressions, e.g., the relativistic magnetohydrodynamics (RMHD) equations. On the other hand, the proposed Jacobian-free solvers hav…
Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression
Background: Electroconvulsive therapy (ECT) is a highly effective brain stimulation treatment for severe depression. Identifying neurochemical changes linked with ECT may point to biomarkers and predictors of successful treatment response. Methods: We used proton magnetic resonance spectroscopy (1H-MRS) to measure longitudinal changes in glutamate/glutamine (Glx), creatine (Cre), choline (Cho) and N-acetylaspartate (NAA) in the dorsal (dACC) and subgenual anterior cingulate cortex (sgACC) and bilateral hippocampus in patients receiving ECT scanned at baseline, after the second ECT session and after the ECT treatment series. Patients were compared with demographically similar controls at bas…
Diffusion front capturing schemes for a class of Fokker–Planck equations: Application to the relativistic heat equation
In this research work we introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker-Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant-Friedrichs-Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker-Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numeri…
GW170817: Measurements of Neutron Star Radii and Equation of State
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…