0000000000039926

AUTHOR

Yu Wang

showing 63 related works from this author

Certain doping concentrations caused half-metallic graphene

2017

This work is supported by National Natural Science Foundation of China (Grant No. 21173096).

Spin polarizationMaterials scienceChemistry(all)02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionCondensed Matter::Materials ScienceHalf-metallawCondensed Matter::SuperconductivityPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]Spin (physics)DopantCondensed matter physicsSpin polarizationGrapheneDopingGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Strongly Correlated ElectronsDensity functional theoryHalf-metalDopant concentrationGraphene0210 nano-technologyGraphene nanoribbonsJournal of Saudi Chemical Society
researchProduct

Euclid preparation. XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

2021

Pocino, A., et al. (Euclid Collaboration)

luminous red galaxiesCosmological parameterAstrophysicsSurveys01 natural sciencesCosmologytechniques: photometricgalaxiesGalaxies: distances and redshiftdistances and redshiftsSurvey010303 astronomy & astrophysicsWeak gravitational lensingPhysicsRedshift surveylsstastro-ph.COgalaxies: distances and redshiftsconstraintsAstrophysics - Cosmology and Nongalactic Astrophysicsredshift surveyCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmological parametersFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsphotometricSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencesdistances and redshifts [Galaxies]cosmological parametersSpurious relationshipCluster analysisdark energy surveyAstrophysics::Galaxy Astrophysics010308 nuclear & particles physicsphotometric [Techniques]Astronomy and Astrophysicsspace115 Astronomy Space scienceRedshiftGalaxySpace and Planetary ScienceCosmological parameters; Galaxies: distances and redshifts; Surveys; Techniques: photometrictechniquesFocus (optics)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologycosmic shearintrinsic alignments
researchProduct

Geochemical characteristics of lawsonite blueschists in tectonic mélange from the Tavşanlı Zone, Turkey: Potential constraints on the origin of Medit…

2019

Mediterranean climateGeophysicschemistryLawsoniteGeochemistry and PetrologyPotassiumMagmatismGeochemistrychemistry.chemical_elementMélangeGeologyAmerican Mineralogist
researchProduct

Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal…

2016

Metal nanoclusters whose surface ligands are removable while keeping their metal framework structures intact are an ideal system for investigating the influence of surface ligands on catalysis of metal nanoparticles. We report in this work an intermetallic nanocluster containing 62 metal atoms, Au34Ag28(PhC≡C)34, and its use as a model catalyst to explore the importance of surface ligands in promoting catalysis. As revealed by single-crystal diffraction, the 62 metal atoms in the cluster are arranged as a four-concentric-shell Ag@Au17@Ag27@Au17 structure. All phenylalkynyl (PA) ligands are linearly coordinated to the surface Au atoms with staple "PhC≡C-Au-C≡CPh" motif. Compared with reporte…

Chemical substanceIntermetallic02 engineering and technology010402 general chemistry01 natural sciencesBiochemistrycatalystsCatalysisCatalysisNanoclustersMetalHydrolysisColloid and Surface ChemistryPolymer chemistryCluster (physics)Organic chemistryta116intermetallic nanoclustersta114ChemistryphenylalkynylGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencessurface ligandsvisual_artvisual_art.visual_art_medium0210 nano-technologyScience technology and societyJournal of the American Chemical Society
researchProduct

Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review

2020

Abstract Green fractional vegetation cover ( f c ) is an important phenotypic factor in the fields of agriculture, forestry, and ecology. Spatially explicit monitoring of f c via relative vegetation abundance (RA) algorithms, especially those based on scaled maximum/minimum vegetation index (VI) values, has been widely investigated in remote sensing research. Although many studies have explored the effectiveness of RA algorithms over the past 30 years, a literature review summarizing the corresponding theoretical background, issues, current state-of-the-art techniques, challenges, and prospects has not yet been published. The overall objective of the present study was to accomplish a compre…

010504 meteorology & atmospheric sciencesResilient Livelihoods0211 other engineering and technologies02 engineering and technologyForests01 natural sciencesNormalized Difference Vegetation IndexArticleVegetation coverAbundance (ecology)Computers in Earth SciencesAdaptationEngineering (miscellaneous)Image resolution021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingMathematicsEstimationVegetationBiodiversity15. Life on landAtomic and Molecular Physics and OpticsComputer Science ApplicationsRemote sensing (archaeology)Vegetation IndexAlgorithm
researchProduct

ChemInform Abstract: N1-Functionalized Indole-Phosphane Oxazoline (IndPHOX) Ligands in Asymmetric Allylic Substitution Reactions.

2012

N-Functionalized IndPHOX ligands bearing various groups have been synthesized and the effects of the N1-substituent on the reaction rate, yield, and asymmetric induction in a palladium-catalyzed allylic substitution reaction are reported. The presence of an oxygen atom in the ligands, namely an N-MOM or N-THP group, led to enhancement of the enantioselectivity in the allylic amination reaction. In addition, a ligand with a chiral oxazoline ring at C-1 and a phosphane substituent at C-2 provided high enantioselectivity in good yield in an asymmetric allylic alkylation reaction.

Substitution reactionAllylic rearrangementStereochemistryLigandorganic chemicalsSubstituentfood and beveragesGeneral MedicineOxazolineAsymmetric inductionchemistry.chemical_compoundTsuji–Trost reactionchemistryAminationChemInform
researchProduct

Age–sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: results from the Global Burden of Disease Study…

2022

Funding: Bill & Melinda Gates Foundation. Background: The global burden of lower respiratory infections (LRIs) and corresponding risk factors in children older than 5 years and adults has not been studied as comprehensively as it has been in children younger than 5 years. We assessed the burden and trends of LRIs and risk factors across all age groups by sex, for 204 countries and territories.  Methods: In this analysis of data for the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we used clinician-diagnosed pneumonia or bronchiolitis as our case definition for LRIs. We included International Classification of Diseases 9th edition codes 079.6, 466–469, 470.0, 480–4…

AdultMaleGlobal HealthTimeGlobal Burden of DiseaseSDG 3 - Good Health and Well-beingRisk FactorsRA0421RA0421 Public health. Hygiene. Preventive MedicineHumansAmbient air-qualityChildRespiratory Tract InfectionsAgedAged 80 and overMCCSex CharacteristicsMalnutritionPyridinolcarbamateBayes Theorem3rd-DAS3142 Public health care science environmental and occupational healthInfectious Diseases3121 General medicine internal medicine and other clinical medicineChild PreschoolFemaleParticulate MatterQuality-Adjusted Life YearsCovid-19LRI
researchProduct

Origin of potassic postcollisional volcanic rocks in young, shallow, blueschist-rich lithosphere

2020

Unusually high Th/La in K-rich orogenic rocks may indicate shallow blueschist-rich sources in accretionary settings.

BlueschistgeographyMultidisciplinarygeography.geographical_feature_category010504 meteorology & atmospheric sciencesContinental collisionLawsoniteSubductionGeochemistrySciAdv r-articlesGeology010502 geochemistry & geophysics01 natural sciencesMantle (geology)Volcanic rockGeochemistryVolcanoLithosphereResearch ArticlesGeologyResearch Article0105 earth and related environmental sciencesScience Advances
researchProduct

All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

2018

Made available in DSpace on 2018-11-26T17:45:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-22 Australian Research Council Council of Scientific and Industrial Research of India Department of Science and Technology, India Science AMP; Engineering Research Board (SERB), India Ministry of Human Resource Development, India Spanish Agencia Estatal de Investigacion Vicepresidencia i Conselleria d'Innovacio, Recerca i Turisme Conselleria d'Educacio i Universitat del Govern de les Illes Balears Conselleria d'Educacio, Investigacio, Cultura i Esport de la Generalitat Valenciana National Science Centre of Poland Swiss National Science Foundation (SNSF) Russian Foundation for Basic Rese…

Physics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsLIGO-VirgoMagnetar01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational waves long transients LIGOGravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSSearch algorithmSIGNALS0103 physical sciencesWaveformlong transientsHigh Energy PhysicsLIGO010306 general physicsgravitational wave010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLIGO-Virgo; gravitational waves; long duration transient[PHYS]Physics [physics]Gravitational wavelong duration transientLIGOgravitational waves; LIGO-Virgo; long duration transient; Physics and Astronomy (miscellaneous)Black holeMODELNeutron starAmplitudegravitational wavesBLACK-HOLEComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRADIATIONNEUTRINOAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Constraints on the sources of post-collisional K-rich magmatism: The roles of continental clastic sediments and terrigenous blueschists

2017

Abstract The possible role of continental sediments in the generation of potassium-enriched lavas of the Alpine-Himalayan belt depends on their melting behaviour either during subduction or during post-collisional relaxation. Although usually classed as orogenic lavas, these volcanic rocks may result from re-melting of newly formed mantle lithosphere 30–40 million years after collision ends, and can thus be considered as the first stage of intraplate volcanism. The potassic component in these volcanics is characterized by a high Th/La signature for which there are two competing explanations: melting of subducted continental clastic sediments, and the involvement of lawsonite blueschists in …

Peridotite010504 meteorology & atmospheric sciencesLawsonitebiologySubductionContinental crustGeochemistryGeologyengineering.material010502 geochemistry & geophysicsbiology.organism_classification01 natural sciencesMantle (geology)Geochemistry and PetrologyCoesiteengineeringGeologyLile0105 earth and related environmental sciencesZirconChemical Geology
researchProduct

Embryonic Growth of Face-Center-Cubic Silver Nanoclusters Shaped in Nearly Perfect Half-Cubes and Cubes.

2016

Demonstrated herein are the preparation and crystallographic characterization of the family of fcc silver nanoclusters from Nichol’s cube to Rubik’s cube and beyond via ligand-control (thiolates and phosphines in this case). The basic building block is our previously reported fcc cluster [Ag14(SPhF2)12(PPh3)8] (1). The metal frameworks of [Ag38(SPhF2)26(PR′3)8] (22) and [Ag63(SPhF2)36(PR′3)8]+ (23), where HSPhF2 = 3,4-difluorothiophenol and R′ = alkyl/aryl, are composed of 2 × 2 = 4 and 2 × 2 × 2 = 8 metal cubes of 1, respectively. All serial clusters share similar surface structural features. The thiolate ligands cap the six faces and the 12 edges of the cube (or half cube) while the phosp…

02 engineering and technologyCrystal structureCubic crystal system010402 general chemistry01 natural sciencesBiochemistryCatalysissilver nanoclustersNanoclustersMetalchemistry.chemical_compoundColloid and Surface ChemistryCluster (physics)ta116Alkylembryonic growthchemistry.chemical_classificationta114ChemistryGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciences3. Good healthCrystallographyvisual_artvisual_art.visual_art_mediumCube0210 nano-technologyPhosphineJournal of the American Chemical Society
researchProduct

N1-Functionalized Indole-Phosphane Oxazoline (IndPHOX) Ligands in Asymmetric Allylic Substitution Reactions

2012

N-Functionalized IndPHOX ligands bearing various groups have been synthesized and the effects of the N1-substituent on the reaction rate, yield, and asymmetric induction in a palladium-catalyzed allylic substitution reaction are reported. The presence of an oxygen atom in the ligands, namely an N-MOM or N-THP group, led to enhancement of the enantioselectivity in the allylic amination reaction. In addition, a ligand with a chiral oxazoline ring at C-1 and a phosphane substituent at C-2 provided high enantioselectivity in good yield in an asymmetric allylic alkylation reaction.

Substitution reactionAllylic rearrangementChemistryorganic chemicalsOrganic ChemistrySubstituentfood and beveragesOxazolineAlkylationAsymmetric inductionMedicinal chemistrychemistry.chemical_compoundTsuji–Trost reactionPhysical and Theoretical Chemistryta116AminationEuropean Journal of Organic Chemistry
researchProduct

Erratum: “Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data” (2019, ApJ, 879, 10)

2019

Two analysis errors have been identified that affect the results for a handful of the high-value pulsars given in Table 1 of Abbott et al. (2019). One affects the Bayesian analysis for the five pulsars that glitched during the analysis period, and the other affects the 5n-vector analysis for J0711-6830. Updated results after correcting the errors are shown in Table 1, which now supersedes the results given for those pulsars in Table 1 of Abbott et al. (2019). Updated versions of figures can be seen in Figures 1-4. Bayesian analysis.-For the glitching pulsars, the signal phase evolution caused by the glitch was wrongly applied twice and was therefore not consistent with our expected model of…

Known Pulsars010504 meteorology & atmospheric sciencesAstronomyAstrophysicsTable (information)Velagravitational waves; pulsars01 natural sciencesPulsar0103 physical sciencesLimit (mathematics)010303 astronomy & astrophysicsgravitational waveComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesPhysics[PHYS]Physics [physics]Gravitational waveTwo HarmonicsAstronomy and AstrophysicsGravitational Waves Known Pulsars Two Harmonics ErratumLIGOAmplitudegravitational wavesSpace and Planetary SciencepulsarsErratumGlitch (astronomy)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysical Journal
researchProduct

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

2021

Ilbert, O., et al. (Euclid Collaboration)

statistical [Methods]IMPACTUNIVERSEAstrophysics01 natural sciencesDark energyGalaxies: distances and redshiftdark energyPHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingPhotometric redshiftmedia_commonPhysicsdistances and redshift [Galaxies]Dark energy; Galaxies: distances and redshifts; Methods: statisticalSIMULATIONastro-ph.CO3103 Astronomy and AstrophysicsProbability distributionSpectral energy distributiongalaxies: distances and redshiftsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 Physicsastro-ph.GAmedia_common.quotation_subjectFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics1912 Space and Planetary Science0103 physical sciencesdistances and redshifts [Galaxies]/dk/atira/pure/subjectarea/asjc/1900/1912DISTRIBUTIONSmethods: statistical010308 nuclear & particles physicsAstronomy and AstrophysicsPERFORMANCE115 Astronomy Space scienceAstrophysics - Astrophysics of GalaxiesEVOLUTIONGalaxyUniverseRedshiftSTELLARRESOLUTIONSpace and Planetary Science10231 Institute for Computational ScienceAstrophysics of Galaxies (astro-ph.GA)Dark energy/dk/atira/pure/subjectarea/asjc/3100/3103[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Novel Carbon Nanotubes Rolled from 6,6,12-Graphyne: Double Dirac Points in 1D Material

2017

Two kinds of novel carbon nanotubes, namely, (N, 0) and (0, N) 6,6,12-graphyne nanotubes (6,6,12-GNTs), are constructed by rolling up the rectangular 6,6,12-graphyne sheets along two different sides into cylinders. The mechanical and electronic properties of 6,6,12-GNTs with varied N from 3 to 20 are investigated by using density functional theory. Unlike the single-wall carbon nanotubes, the Young’s moduli of 6,6,12-GNTs do not remain constant in the case of (N, 0), but the (0, N) tubes possess almost the same one around 0.32 TPa. The band structures and density of states are also exhibited in this work. When the tube sizes N are bigger than four, Dirac points appear at Fermi level in the …

Materials scienceCondensed matter physicsBand gapDirac (software)Fermi level02 engineering and technologyCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsModulilaw.inventionGraphynesymbols.namesakeGeneral EnergyClassical mechanicslawsymbolsDensity of statesDensity functional theoryPhysical and Theoretical Chemistry0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Hyperspectral response of agronomic variables to background optical variability: Results of a numerical experiment

2022

Understanding how biophysical and biochemical variables contribute to the spectral characteristics of vegetation canopies is critical for their monitoring. Quantifying these contributions, however, remains difficult due to extraneous factors such as the spectral variability of canopy background materials, including soil/crop-residue moisture, soil-type, and non-photosynthetic vegetation (NPV). This study focused on exploring the spectral response of two important agronomic variables (1) leaf chlorophyll content (Cab ) and (2) leaf area index (LAI) under various canopy backgrounds through a global sensitivity analysis of wheat-like canopy spectra simulated using the physically-based PROSAIL …

Atmospheric ScienceResilient LivelihoodsLEAF-AREA-INDEXSoil typePHOTOCHEMICAL REFLECTANCE INDEXBIOPHYSICAL PROPERTIESMeteorology & Atmospheric SciencesAdaptationLeaf chlorophyll contentGlobal and Planetary ChangeScience & TechnologyVEGETATION INDEXESSPECTRAL INDEXESGLOBAL SENSITIVITY-ANALYSISAgricultureNon-photosynthetic vegetationForestry22/4 OA procedureAgronomyHyperspectral responseGlobal sensitivity analysisITC-ISI-JOURNAL-ARTICLEPhysical SciencesLeaf area indexCHLOROPHYLL CONTENTGREEN LAILife Sciences & BiomedicineCANOPY REFLECTANCEAgronomy and Crop ScienceRADIATIVE-TRANSFER MODELAgricultural and Forest Meteorology
researchProduct

The global burden of cancer attributable to risk factors, 2010–19 : A systematic analysis for the Global Burden of Disease Study 2019

2022

Background: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 20…

MaleDEATHSDALY cancer risk factorsMedizinsystematic analysisGlobal HealthRisk AssessmentCancer preventionGlobal Burden of DiseaseRC0254Risk-attributable cancer deathsSDG 3 - Good Health and Well-beingRA0421Risk FactorsRA0421 Public health. Hygiene. Preventive MedicineQuality-Adjusted Life YearNeoplasmscancerHumansGlobal Burden of Disease StudyUKMedicine(all)MCCRC0254 Neoplasms. Tumors. Oncology (including Cancer)Risk FactorSmokingCOVID-193rd-DASGeneral MedicineDisability-adjusted life-yearsSOCIAL DETERMINANTSRisk assessmentsrisk factorCardiovascular and Metabolic Diseases3121 General medicine internal medicine and other clinical medicineOBESITYCancer burden/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingNeoplasmFemaleLIFE-STYLEQuality-Adjusted Life YearsHEALTHRAHumanRC
researchProduct

An Intermetallic Au24Ag20 Superatom Nanocluster Stabilized by Labile Ligands

2015

An intermetallic nanocluster containing 44 metal atoms, Au24Ag20(2-SPy)4(PhC≡C)20Cl2, was successfully synthesized and structurally characterized by single-crystal analysis and density funtional theory computations. The 44 metal atoms in the cluster are arranged as a concentric three-shell Au12@Ag20@Au12 Keplerate structure having a high symmetry. For the first time, the co-presence of three different types of anionic ligands (i.e., phenylalkynyl, 2-pyridylthiolate, and chloride) was revealed on the surface of metal nanoclusters. Similar to thiolates, alkynyls bind linearly to surface Au atoms using their σ-bonds, leading to the formation of two types of surface staple units (PhC≡C-Au-L, L …

Models MolecularSilversynthesisInorganic chemistryIntermetallicMolecular ConformationCrystal structureLigandsBiochemistryCatalysisSilver nanoparticleNanoclustersMetalColloid and Surface ChemistryCluster (physics)ta116intermetallic nanoclustersta114LabilityChemistrySuperatomGeneral ChemistryNanostructuresCrystallographysurface ligandsvisual_artvisual_art.visual_art_mediumGoldJournal of the American Chemical Society
researchProduct

Constraining the p -Mode– g -Mode Tidal Instability with GW170817

2019

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…

Physics010308 nuclear & particles physicsGravitational waveGeneral Physics and AstronomyBreaking wave7. Clean energy01 natural sciencesInstabilityComputational physicsNeutron starStarsAmplitude13. Climate action0103 physical sciencesWaveformExtreme value theory010303 astronomy & astrophysicsPhysical Review Letters
researchProduct

Inhomogeneous-strain-induced magnetic vortex cluster in one-dimensional manganite wire

2020

Abstract Mixed-valance manganites with strong electron correlation exhibit strong potential for spintronics, where emergent magnetic behaviors, such as propagation of high-frequency spin waves and giant topological Hall Effects can be driven by their mesoscale spin textures. Here, we create magnetic vortex clusters with flux closure spin configurations in single-crystal La0.67Sr0.33MnO3 wire. A distinctive transformation from out-of-plane domains to a vortex state is directly visualized using magnetic force microscopy at 4 K in wires when the width is below 1.0 μm. The phase-field modeling indicates that the inhomogeneous strain, accompanying with shape anisotropy, plays a key role for stab…

PhysicsMultidisciplinaryCondensed matter physicsSpintronicsSpin structure010502 geochemistry & geophysicsManganite01 natural sciencesVortex stateSpin waveCondensed Matter::Strongly Correlated ElectronsMagnetic force microscopeAnisotropy0105 earth and related environmental sciencesSpin-½Science Bulletin
researchProduct

All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures

2013

Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory…

Multidisciplinaryta114LigandIntermetallicGeneral Physics and AstronomyNanoparticleNanotechnologyGeneral ChemistryCrystal structureengineering.materialGeneral Biochemistry Genetics and Molecular BiologySilver nanoparticleNanoclustersengineeringNoble metalSingle crystalNature Communications
researchProduct

Ligand-Stabilized Au13Cux (x = 2, 4, 8) Bimetallic Nanoclusters: Ligand Engineering to Control the Exposure of Metal Sites

2013

Three novel bimetallic Au-Cu nanoclusters stabilized by a mixed layer of thiolate and phosphine ligands bearing pyridyl groups are synthesized and fully characterized by X-ray single crystal analysis and density functional theory computations. The three clusters have an icosahedral Au13 core face-capped by two, four, and eight Cu atoms, respectively. All face-capping Cu atoms in the clusters are triply coordinated by thiolate or pyridyl groups. The surface ligands control the exposure of Au sites in the clusters. In the case of the Au13Cu8 cluster, the presence of 12 2-pyridylthiolate ligands still leaves open space for catalysis. All the 3 clusters are 8-electron superatoms displaying opti…

Models MolecularPhosphinesPyridinesSurface PropertiesInorganic chemistryMetal NanoparticlesCrystal structureLigandsBiochemistryCatalysisNanoclusterschemistry.chemical_compoundColloid and Surface ChemistryCluster (physics)Sulfhydryl CompoundsBimetallic stripta214ta114LigandThermal decompositionGeneral ChemistryCrystallographychemistryQuantum TheoryDensity functional theoryGoldCopperPhosphineJournal of the American Chemical Society
researchProduct

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data

2019

We present results of an all-sky search for continuous gravitational waves (CWs), which can be produced by fast-spinning neutron stars with an asymmetry around their rotation axis, using data from the second observing run of the Advanced LIGO detectors. We employ three different semi-coherent methods ($\textit{FrequencyHough}$, $\textit{SkyHough}$, and $\textit{Time-Domain $\mathcal{F}$-statistic}$) to search in a gravitational-wave frequency band from 20 to 1922 Hz and a first frequency derivative from $-1\times10^{-8}$ to $2\times10^{-9}$ Hz/s. None of these searches has found clear evidence for a CW signal, so we present upper limits on the gravitational-wave strain amplitude $h_0$ (the …

AstronomyAstrophysicsRotation01 natural sciencesrotationGravitation Cosmology & AstrophysicsGeneral Relativity and Quantum CosmologyPhysics Particles & Fieldscontinuous gravitational waveLIGOneutron starGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEPhysicsPhysical SystemsAmplitudeGeneral relativitygravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave detectionAstrophysics - High Energy Astrophysical Phenomenacontinuous gravitational waves; Advanced LIGOcontinuous gravitational wavesasymmetryGravitationNeutron stars & pulsarsGeneral relativityFrequency bandmedia_common.quotation_subjectgr-qcFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational waves0103 physical sciencesAdvanced LIGOddc:530Gravitation Cosmology & Astrophysics010306 general physicsgravitational radiation: frequencySTFCgravitational wavesneutron starsGravitational wave sourcesScience & TechnologyGravitational wave sources Gravitational waves Physical Systems Neutron stars and pulsars Gravitational wave detection010308 nuclear & particles physicsGravitational waveRCUKGravitational Wave PhysicsLIGONeutron stars & pulsarsNeutron starSkyNeutron stars and pulsarsDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

2016

Seuls les 100 premiers auteurs dont les auteurs INRA ont été entrés dans la notice. La liste complète des auteurs et de leurs affiliations est accessible sur la publication.; International audience; In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues…

[SDV]Life Sciences [q-bio]autophagosomeReview Articleddc:616.07stressstreLC3MESH: AnimalsSettore MED/49 - Scienze Tecniche Dietetiche ApplicateSettore BIO/06 - Anatomia Comparata E Citologiachaperone-mediated autophagyComputingMilieux_MISCELLANEOUSSettore BIO/11Pharmacology. TherapySettore BIO/13standards [Biological Assay]autolysosomeMESH: Autophagy*/physiologylysosomemethods [Biological Assay]Biological AssaySettore BIO/17 - ISTOLOGIAErratumHumanBiochemistry & Molecular BiologySettore BIO/06physiology [Autophagy]Chaperonemediated autophagy[SDV.BC]Life Sciences [q-bio]/Cellular BiologyNOautophagy guidelines molecular biology ultrastructureautolysosome; autophagosome; chaperone-mediated autophagy; flux; LC3; lysosome; macroautophagy; phagophore; stress; vacuoleMESH: Biological Assay/methodsMESH: Computer Simulationddc:570Autolysosome Autophagosome Chaperonemediated autophagy Flux LC3 Lysosome Macroautophagy Phagophore Stress VacuoleAutophagyAnimalsHumansComputer SimulationSettore BIO/10ddc:612BiologyphagophoreMESH: HumansvacuoleAnimalLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole; Animals; Biological Assay; Computer Simulation; Humans; Autophagy0601 Biochemistry And Cell BiologyfluxmacroautophagyMESH: Biological Assay/standards*Human medicineLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole
researchProduct

The Combined Effects of Ethylene and MeJA on Metabolic Profiling of Phenolic Compounds in Catharanthus roseus Revealed by Metabolomics Analysis

2016

Phenolic compounds belong to a class of secondary metabolites and are implicated in a wide range of responsive mechanisms in plants triggered by both biotic and abiotic elicitors. In this study, we approached the combinational effects of ethylene and MeJA (methyl jasmonate) on phenolic compounds profiles and gene expressions in the medicinal plant Catharanthus roseus. In virtue of a widely non-targeted metabolomics method, we identified a total of 34 kinds of phenolic compounds in the leaves, composed by 7 C6C1-, 11 C6C3-, and 16 C6C3C6 compounds. In addition, 7 kinds of intermediates critical for the biosynthesis of phenolic compounds and alkaloids were identified and discussed with phenol…

0106 biological sciences0301 basic medicineEthylenePhysiologyMetabolitePlant Sciencephenolic compoundsBiology01 natural sciencesCinnamic acid03 medical and health scienceschemistry.chemical_compoundMetabolomicsmethy jasmonatePhysiology (medical)ethyleneOriginal ResearchMethyl jasmonateCatharanthus roseusJasmonic acidCatharanthus roseusbiology.organism_classification030104 developmental biologychemistryBiochemistrynon-targeted metabolomicsSalicylic acid010606 plant biology & botanyFrontiers in Physiology
researchProduct

Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

2020

We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perfor…

Gravitational waves; Neutron stars; Pulsars; Gravitational wave sources010504 meteorology & atmospheric sciencesAstronomyAstrophysicsVela01 natural sciencesGeneral Relativity and Quantum Cosmology[SPI]Engineering Sciences [physics]neutronMillisecond pulsaremission010303 astronomy & astrophysicsQCQBSettore FIS/01Physicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]PhysicsAstrophysics::Instrumentation and Methods for Astrophysics[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational-Waves Pulsars Neutron StarsGravitational wavePROPER MOTIONProper motiongr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNeutron starGeneral Relativity and Quantum Cosmology (gr-qc)Gravitational-WavesGravitational wavesNeutron starsSEARCHESSettore FIS/05 - Astronomia e AstrofisicaPulsar0103 physical sciencesPulsar[CHIM]Chemical SciencesAstrophysiqueSTFCPulsarsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesGravitational wave sourcescrab pulsarGravitational waveCrab PulsarRCUKAstronomy and AstrophysicsNeutron StarsGravitational waves Neutron stars Pulsars Gravitational wave sourcesLIGONeutron starSpace and Planetary Science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Plasmonic twinned silver nanoparticles with molecular precision

2016

Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle dis…

NanostructureMaterials scienceScienceGeneral Physics and AstronomyNanoparticlePhysics::OpticsNanotechnology02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologySilver nanoparticleArticleSurface plasmon resonanceta116PlasmonMultidisciplinaryta114QGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)nanoparticlesnanohiukkaset0210 nano-technologySingle crystal
researchProduct

A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo

2021

This paper presents the gravitational-wave measurement of the Hubble constant (H 0) using the detections from the first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of H 0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint measurement. Our updated measurement is H 0 = km s-1 Mpc-1 (68.3% of the highest density posterior interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only value of km s-1 Mpc-1. A significant …

Gravitacióneutron star: binarycosmological model010504 meteorology & atmospheric sciencesAstronomyGravitational Waves Hubble constant O2 LIGO Virgodetector: network01 natural sciencesCosmologyGeneral Relativity and Quantum CosmologyLIGOdark energy010303 astronomy & astrophysicsQCPhysicsSettore FIS/01Hubble constantSettore FIS/05CATALOGPhysical Sciencessymbols[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)DATA RELEASECOSMOLOGICAL PARAMETERSFOS: Physical sciencesO2General Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsLUMINOSITY FUNCTIONSgravitational radiation: direct detectionGravitational-wave astronomy1STArticleelectromagnetic field: productionsymbols.namesakeBinary black hole0103 physical sciencesDISTRIBUTIONS/dk/atira/pure/subjectarea/asjc/1900/1912K-CORRECTIONSSDG 7 - Affordable and Clean EnergyAstrophysiqueSTFC0105 earth and related environmental sciencesGravitational Waves/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyGravitational waveVirgoAstronomyRCUKAstronomy and Astrophysicscosmology; gravitational waves; Hubble constant310 Galaxies and CosmologyLIGOGalaxyEVOLUTIONDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiegravitational radiation detectorVIRGOblack hole: binarySpace and Planetary Science[SDU]Sciences of the Universe [physics]DENSITYgravitational radiation: emissionDark energyAstronomiaddc:520/dk/atira/pure/subjectarea/asjc/3100/3103galaxyGravitational wave astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Hubble's lawThe Astrophysical Journal
researchProduct

Mechanisms of covalent dimerization on a bulk insulating surface

2017

Combining density functional theory and high resolution NC-AFM experiments, we have studied the on surface reaction mechanisms' responsible for the covalent dimerization of 4-iodobenzoic acid (IBA) organic molecules on the calcite (10.4), insulating surface. When annealed at 580 K, the Molecules assemble in one-dimensional chains of covalently bound dimers: The chains have a unique orientation and result from a complex set of processes, including a nominally rather. costly double dehalogenation reaction followed by dimerization. First, focusing on the latter two processes and using the nudged elastic band method, we analyze a number of possible mechanisms involving one and two molecules, an…

Exothermic reactionReaction mechanismStereochemistryChemistryHalogenation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysisGeneral EnergyF170 Physical ChemistryCovalent bondChemical physicsIntermediate stateMoleculeDensity functional theoryF200 Materials ScienceF343 Computational PhysicsPhysical and Theoretical Chemistry0210 nano-technology
researchProduct

Potassium-rich magmatism from a phlogopite-free source

2017

The generation of strongly potassic melts in the mantle is generally thought to require the presence of phlogopite in the melting assemblage. In the Mediterranean region, trace element and isotope compositions indicate that continental crustal material is involved in the generation of many potassium-rich lavas. This is clearest in ultrapotassic rocks like lamproites and shoshonites, for which the relevant chemical signals are less diluted by extensive melting of peridotite. Furthermore, melting occurs here in young lithosphere, so the continental crust was not stored for a long period of time in the mantle before reactivation. We have undertaken two types of experiments to investigate the r…

Peridotite010504 meteorology & atmospheric sciencesContinental crustTrace elementGeochemistryGeologyCrustengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)LithosphereMagmatismengineeringPhlogopiteGeology0105 earth and related environmental sciences
researchProduct

All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run

2019

We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…

AstronomyGravitational waves detectionAstrophysicsdetector: network01 natural sciencesSignalGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational waves detection Stochastic gravitational-wavebinary [black hole]LIGOgravitational waveQCQBmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsgravitational waves neutron starsgravitational wavesGeneral relativityburst [gravitational radiation]network [detector]Physical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]direct detection [gravitational radiation]Advanced VirgoAstrophysics - High Energy Astrophysical PhenomenaFrequency bandsensitivity [detector]gr-qcmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionemission [gravitational radiation]Binary black holeSettore FIS/05 - Astronomia e Astrofisicabinary: coalescence0103 physical sciencesgravitational radiation: burstAdvanced LIGOWaveformddc:530010306 general physicscosmic stringSTFCScience & Technology010308 nuclear & particles physicsGravitational waveRCUKStochastic gravitational-waveGravitational Wave PhysicsLIGOgravitational radiation detectorgravitational waves; Advanced LIGO; Advanced VirgoCosmic stringdetector: sensitivityVIRGOPhysics and Astronomyblack hole: binarySkygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Structural Evolution of Atomically Precise Thiolated Bimetallic [Au12+nCu32(SR)30+n]4– (n = 0, 2, 4, 6) Nanoclusters

2014

A series of all-thiol stabilized bimetallic Au-Cu nanoclusters, [Au(12+n)Cu32(SR)(30+n)](4-) (n = 0, 2, 4, 6 and SR = SPhCF3), are successfully synthesized and characterized by X-ray single-crystal analysis and density functional theory (DFT) calculations. Each cluster consists of a Keplerate two-shell Au12@Cu20 core protected by (6 - n) units of Cu2(SR)5 and n units of Cu2Au(SR)6 (n = 0, 2, 4, 6) motifs on its surface. The size and structural evolution of the clusters is atomically controlled by the Au precursors and countercations used in the syntheses. The clusters exhibit similar optical absorption properties that are not dependent on the number of surface Cu2Au(SR)6 units. Although DFT…

ta114ChemistrySuperatomGeneral ChemistryCrystal structureElectronic structureBiochemistryCatalysisNanoclustersCrystallographyColloid and Surface ChemistryNanocrystalCluster (physics)Density functional theoryta116Bimetallic stripJournal of the American Chemical Society
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Using Chinese in China - challenges and opportunities : a case study of three Finnish sojourners

2016

Despite the growing attention on interaction between language learners/sojourners and host community, there has been little research on second language (L2) using experience by adopting case study approach, by which each individual’s voice is valued. Grounded in sociocultural theory (SCT), the present study explores challenges and opportunities of international sojourners when they use Chinese in China by investigating three Finnish sojourners’ experiences in using Chinese. Coleman’s concentric circles model is adopted to illustrate sojourners’ different language choices and reasons with compatriots, international people and host community. Narratives and interview data are analyzed and dis…

Chinese L2 learningsociocultural theoryKiinaagencyopiskelukulttuurierotChinese L2 useresidence abroadTapaustutkimuskiinan kielityö
researchProduct

Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run

2018

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). N…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftendensity: fluctuationMACHOAstronomyGeneral Physics and AstronomyPrimordial black holeAstrophysicsCoalescence01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationLIMITSddc:550Massive compact halo objectLIGOneutron starQCQBPhysicseducation.field_of_studyPhysicsDensity fluctuationBinary systemsgravitational wavesPhysical SciencesSearch enginesastro-ph.COblack hole: primordialAstrophysics - Cosmology and Nongalactic AstrophysicsGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcBinary formationAstrophysics::High Energy Astrophysical PhenomenaPopulationDark matterPhysics MultidisciplinaryEarly universeFOS: Physical sciencesPrimordial black holesGeneral Relativity and Quantum Cosmology (gr-qc)dark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesCoalescence rateGravitation and AstrophysicsPhysics and Astronomy (all)General Relativity and Quantum Cosmologybinary: coalescence0103 physical sciencesddc:530Delta functions010306 general physicseducationSTFCAstrophysics::Galaxy AstrophysicsScience & Technologymass: solar010308 nuclear & particles physicsGravitational waveStellar evolutionsbinary: formationgravitational radiationRCUKblack hole: massGalaxiesStarsGalaxyLIGOBlack holeVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikMicro-lensing[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct

Euclid Preparation. XIV. The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Data Release 3

2021

Stanford, S. A., et al.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Calibration (statistics)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsColor space217101 natural sciencesCosmologyLarge-scale structure010309 optics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]galaxy spectroscopySettore FIS/05 - Astronomia e AstrofisicaSpitzer Space Telescope0103 physical sciencesDISTRIBUTIONSAstrophysics::Solar and Stellar AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)PHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingAstrophysics::Galaxy AstrophysicsPhysicsHardware_MEMORYSTRUCTURESAstrophysics::Instrumentation and Methods for AstrophysicsEuclidAstronomy and AstrophysicsRedshiftGalaxyCosmologySpace and Planetary ScienceGalaxy spectroscopyDark energyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Site Preference in Multimetallic Nanoclusters: Incorporation of Alkali Metal Ions or Copper Atoms into the Alkynyl-Protected Body-Centered Cubic Clus…

2016

The synthesis, structure, substitution chemistry, and optical properties of the gold-centered cubic monocationic cluster [Au@Ag8@Au6(C≡CtBu)12]+ are reported. The metal framework of this cluster can be described as a fragment of a body-centered cubic (bcc) lattice with the silver and gold atoms occupying the vertices and the body center of the cube, respectively. The incorporation of alkali metal atoms gave rise to [MnAg8−nAu7(C≡CtBu)12]+ clusters (n=1 for M=Na, K, Rb, Cs and n=2 for M=K, Rb), with the alkali metal ion(s) presumably occupying the vertex site(s), whereas the incorporation of copper atoms produced [CunAg8Au7−n(C≡CtBu)12]+ clusters (n=1–6), with the Cu atom(s) presumably occup…

Substitution reactiongold-silver nanoclustersta114Chemistry010405 organic chemistrySuperatomInorganic chemistrychemistry.chemical_elementGeneral ChemistryGeneral MedicineCubic crystal systemAlkali metal010402 general chemistryCopper01 natural sciencesCatalysisIonNanoclusters0104 chemical sciencesCrystallographycopperCluster (physics)ta116superatomsalkalai metalsAngewandte Chemie
researchProduct

CCDC 1020498: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal Systemtetrakis(tetraphenylphosphonium) triacontakis(mu-4-(trifluoromethyl)benzenethiolato)-dodeca-gold-dotriaconta-copper hexane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1469852: Experimental Crystal Structure Determination

2016

Related Article: Yu Wang, Xian-Kai Wan, Liting Ren, Haifeng Su, Gang Li, Sami Malola, Shuichao Lin, Zichao Tang, Hannu Häkkinen, Boon K Teo, Quan-Ming Wang, and Nanfeng Zheng|2016|J.Am.Chem.Soc.|138|3278|doi:10.1021/jacs.5b12730

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterspentakis(mu3-eta2-Phenylethynyl)-dodecakis(mu3-phenylethynyl)-heptadecakis(mu2-eta2-phenylethynyl)-tetratriaconta-gold-octacosa-silver toluene unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1020499: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(tetrabutylammonium) dotriacontakis(mu-4-(trifluoromethyl)benzenethiolato)-tetradeca-gold-dotriaconta-copper dichloromethane solvate hexahydrateExperimental 3D Coordinates
researchProduct

CCDC 1530605: Experimental Crystal Structure Determination

2017

Related Article: Huayan Yang, Juanzhu Yan, Yu Wang, Haifeng Su, Lars Gell, Xiaojing Zhao, Chaofa Xu, Boon K. Teo, Hannu Häkkinen , and Nanfeng Zheng|2017|J.Am.Chem.Soc.|139|31|doi:10.1021/jacs.6b10053

Space GroupCrystallographyCrystal Systemhexatriacontakis(mu-34-difluorobenzene-1-thiolato)-octakis(tri-n-butylphosphine)-trihexaconta-silver tetraphenylborateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 830168: Experimental Crystal Structure Determination

2012

Related Article: Yu Wang, M.J.P.Vaismaa, K.Rissanen, R.Franzen|2012|Eur.J.Org.Chem.|2012|1569|doi:10.1002/ejoc.201101540

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-(Diphenylphosphoryl)-3-(4-isopropyl-45-dihydro-13-oxazol-2-yl)-1-(tetrahydro-2H-pyran-2-yl)-1H-indoleExperimental 3D Coordinates
researchProduct

CCDC 1496141: Experimental Crystal Structure Determination

2016

Related Article: Huayan Yang, Yu Wang, Xi Chen, Xiaojing Zhao, Lin Gu, Huaqi Huang, Juanzhu Yan, Chaofa Xu, Gang Li, Junchao Wu, Alison J. Edwards, Birger Dittrich, Zichao Tang, Dongdong Wang, Lauri Lehtovaara, Hannu Häkkinen, Nanfeng Zheng|2016|Nat.Commun.|7|12809|doi:10.1038/ncomms12809

Space GroupCrystallographybis(mu-bromo)-bis(mu-chloro)-tridecahectakis(mu-4-t-butylbenzene-1-thiolato)-tetraheptacontatricta-silverCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1530607: Experimental Crystal Structure Determination

2017

Related Article: Huayan Yang, Juanzhu Yan, Yu Wang, Haifeng Su, Lars Gell, Xiaojing Zhao, Chaofa Xu, Boon K. Teo, Hannu Häkkinen , and Nanfeng Zheng|2017|J.Am.Chem.Soc.|139|31|doi:10.1021/jacs.6b10053

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexacosakis(mu-34-difluorophenylthiolato)-octakis(tri-n-butylphosphine)-octatriaconta-silver dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1530606: Experimental Crystal Structure Determination

2017

Related Article: Huayan Yang, Juanzhu Yan, Yu Wang, Haifeng Su, Lars Gell, Xiaojing Zhao, Chaofa Xu, Boon K. Teo, Hannu Häkkinen , and Nanfeng Zheng|2017|J.Am.Chem.Soc.|139|31|doi:10.1021/jacs.6b10053

hexacosakis(mu-34-difluorobenzene-1-thiolato)-octakis(triphenylphosphine)-octatriaconta-silver dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1530604: Experimental Crystal Structure Determination

2017

Related Article: Huayan Yang, Juanzhu Yan, Yu Wang, Haifeng Su, Lars Gell, Xiaojing Zhao, Chaofa Xu, Boon K. Teo, Hannu Häkkinen , and Nanfeng Zheng|2017|J.Am.Chem.Soc.|139|31|doi:10.1021/jacs.6b10053

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexatriacontakis(mu-34-difluorobenzene-1-thiolato)-octakis(tri-n-butylphosphine)-trihexaconta-silver bromideExperimental 3D Coordinates
researchProduct

CCDC 1020496: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

tetrakis(tetraphenylphosphonium) icosakis(mu-4-(trifluoromethyl)benzenethiolato)-trideca-gold-dodeca-copper dichloromethane solvate tetrahydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953878: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Hakkinen, Nanfeng Zheng|2013|Nat.Commun.|4|2422|doi:10.1038/ncomms3422

Space GroupCrystallographytetrakis(Tetraphenylphosphonium) tetracosakis(mu~3~-34-difluorobenzenethiolato)-hexakis(mu~2~-34-difluorobenzenethiolato)-tetratetraconta-silver dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953880: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Hakkinen, Nanfeng Zheng|2013|Nat.Commun.|4|2422|doi:10.1038/ncomms3422

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(Tetraphenylphosphonium) tetracosakis(mu3-4-fluorobenzenethiolato)-hexakis(mu2-4-fluorobenzenethiolato)-tetratetraconta-silver unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 953881: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Hakkinen, Nanfeng Zheng|2013|Nat.Commun.|4|2422|doi:10.1038/ncomms3422

Space GroupCrystallographytetrakis(Tetraphenylphosphonium) tetracosakis(mu~3~-4-fluorobenzenethiolato)-hexakis(mu~2~-4-fluorobenzenethiolato)-dodeca-gold-dotriaconta-silver dichloromethane solvate hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1020497: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(tetraphenylphosphonium) tetratriacontakis(mu-4-(trifluoromethyl)benzenethiolato)-hexadeca-gold-dotriaconta-copperExperimental 3D Coordinates
researchProduct

CCDC 954905: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang , Yu Wang , Jing Lei , Lei Shi , Xiaohu Wu , Ville Mäkinen , Shuichao Lin , Zichao Tang , Jian He , Hannu Häkkinen , Lansun Zheng , and Nanfeng Zheng|2013|J.Am.Chem.Soc.|135|9568|doi:10.1021/ja402249s

Space GroupCrystallographyCrystal Systemoctakis(mu~2~-4-t-Butylbenzenethiolato)-tetrakis(mu~2~-2-(diphenylphosphino)pyridine)-tetra-copper-trideca-gold perchlorate dichloromethane solvate trihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 954903: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang , Yu Wang , Jing Lei , Lei Shi , Xiaohu Wu , Ville Mäkinen , Shuichao Lin , Zichao Tang , Jian He , Hannu Häkkinen , Lansun Zheng , and Nanfeng Zheng|2013|J.Am.Chem.Soc.|135|9568|doi:10.1021/ja402249s

Space GroupCrystallographydodecakis(mu~3~-Pyridine-2-thiolato)-octa-copper-trideca-gold chloride dichloromethane solvate trihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2022415: Experimental Crystal Structure Determination

2020

Related Article: Yu Wang, Haifeng Su, Liting Ren, Sami Malola, Shuichao Lin, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2016|Angew.Chem.,Int.Ed.|55|15152|doi:10.1002/anie.201609144

Space GroupCrystallographydodecakis(mu-t-butylethynyl)-hepta-gold-octa-silverCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1427733: Experimental Crystal Structure Determination

2015

Related Article: Yu Wang, Haifeng Su, Chaofa Xu, Gang Li, Lars Gell, Shuichao Lin, Zichao Tang, Hannu Häkkinen, and Nanfeng Zheng|2015|J.Am.Chem.Soc.|137|4324|doi:10.1021/jacs.5b01232

Space GroupCrystallographyCrystal Systembis(mu-chloro)-icosakis(mu-phenylethynyl)-tetrakis(mu-pyridine-2-thiolato)-tetracosa-gold-icosa-silver tetrahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 954904: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang , Yu Wang , Jing Lei , Lei Shi , Xiaohu Wu , Ville Mäkinen , Shuichao Lin , Zichao Tang , Jian He , Hannu Häkkinen , Lansun Zheng , and Nanfeng Zheng|2013|J.Am.Chem.Soc.|135|9568|doi:10.1021/ja402249s

hexakis(mu~2~-Pyridine-2-thiolato)-hexakis(triphenylphosphine)-di-copper-trideca-gold chloride trihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953883: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Hakkinen, Nanfeng Zheng|2013|Nat.Commun.|4|2422|doi:10.1038/ncomms3422

tetrakis(Tetraphenylphosphonium) tetracosakis(mu~3~-4-(trifluoromethyl)benzenethiolato)-hexakis(mu~2~-4-(trifluoromethyl)benzenethiolato)-dodeca-gold-dotriaconta-silverSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953879: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Hakkinen, Nanfeng Zheng|2013|Nat.Commun.|4|2422|doi:10.1038/ncomms3422

tetrakis(Tetraphenylphosphonium) tetracosakis(mu3-34-difluorobenzenethiolato)-hexakis(mu2-34-difluorobenzenethiolato)-dodeca-gold-dotriaconta-silver dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953882: Experimental Crystal Structure Determination

2013

Related Article: Huayan Yang, Yu Wang, Huaqi Huang, Lars Gell, Lauri Lehtovaara, Sami Malola, Hannu Hakkinen, Nanfeng Zheng|2013|Nat.Commun.|4|2422|doi:10.1038/ncomms3422

Space GroupCrystallographyCrystal SystemCrystal Structuretetrakis(Tetraphenylphosphonium) tetracosakis(mu~3~-4-(trifluoromethyl)benzenethiolato)-hexakis(mu~2~-4-(trifluoromethyl)benzenethiolato)-tetratetraconta-silver hydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1496142: Experimental Crystal Structure Determination

2016

Related Article: Huayan Yang, Yu Wang, Xi Chen, Xiaojing Zhao, Lin Gu, Huaqi Huang, Juanzhu Yan, Chaofa Xu, Gang Li, Junchao Wu, Alison J. Edwards, Birger Dittrich, Zichao Tang, Dongdong Wang, Lauri Lehtovaara, Hannu Häkkinen, Nanfeng Zheng|2016|Nat.Commun.|7|12809|doi:10.1038/ncomms12809

Space GroupCrystallographyCrystal SystemCrystal StructureTetraphenylphosphonium (mu-chloro)-tetrahexacontakis(mu-4-t-butylbenzene-1-thiolato)-heptatriacontahecta-silver dichlorideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1020495: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(tetrabutylammonium) hexatriacontakis(mu-4-(trifluoromethyl)benzenethiolato)-octadeca-gold-dotriaconta-copper dichloromethane solvateExperimental 3D Coordinates
researchProduct