0000000000039963

AUTHOR

Marie-noëlle Binet

showing 10 related works from this author

Influence of plant traits, soil microbial properties, and abiotic parameters on nitrogen turnover of grassland ecosystems

2016

International audience; Although it is known that multiple interactions among plant functional traits, microbial properties , and abiotic soil parameters influence the nutrient turnover, the relative contribution of each of these groups of variables is poorly understood. We manipulated grassland plant functional composition and soil nitrogen (N) availability in a multisite mesocosm experiment to quantify their relative effects on soil N turnover. Overall, root traits, arbuscular mycorrhizal colonization, denitrification potential, as well as N availability and water availability, best explained the variation in measured ecosystem properties, especially the trade-off between nutrient sequest…

0106 biological sciencesleaf traitsSoil biology[SDV]Life Sciences [q-bio]ammonia‐oxidizing archaea and bacteriawater availability010603 evolutionary biology01 natural sciencescomplex mixtures[ SDV.EE ] Life Sciences [q-bio]/Ecology environmentMesocosmnitrite reducersNutrientlcsh:QH540-549.5Ammonia-oxidizing Archaea And Bacteria ; Arbuscular Mycorrhizal Colonization ; Ecosystem Properties ; Grasslands ; Leaf Traits ; Nitrite Oxidizers ; Nitrite Reducers ; Nutrient Availability ; Root Traits ; Water AvailabilityEcosystemEcology Evolution Behavior and Systematics2. Zero hungerAbiotic component[SDV.EE]Life Sciences [q-bio]/Ecology environment[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology[ SDV ] Life Sciences [q-bio]EcologyEcologySoil organic mattergrasslandsfood and beverages04 agricultural and veterinary sciences15. Life on landnitrite oxidizersammonia-oxidizing archaea and bacteriaroot traitsAgronomySoil water040103 agronomy & agriculturearbuscular mycorrhizal colonization0401 agriculture forestry and fisheriesEnvironmental scienceecosystem propertieslcsh:Ecologynutrient availabilityammonia-oxidizing archaea and bacteria;arbuscular mycorrhizal colonization;ecosystem properties;grasslands;leaf traits;nitrite oxidizers;nitrite reducers;nutrient availability;root traits;water availabilitySoil fertility[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

Plant species identities and fertilization influence on arbuscular mycorrhizal fungal colonisation and soil bacterial activities

2016

International audience; Plant species influence soil microbial communities, mainly through their functional traits. However, mechanisms underlying these effects are not well understood, and in particular how plant/ microorganism interactions are affected by plant identities and/or environmental conditions. Here, we performed a greenhouse experiment to assess the effects of three plant species on arbuscular mycorrhizal fungal (AMF) colonization, bacterial potential nitrification (PNA) and denitrification activities (PDA) through their functional traits related to nitrogen acquisition and turnover. Three species with contrasting functional traits and strategies (from exploitative to conservat…

0106 biological sciencesNutrient cycle[SDE.MCG]Environmental Sciences/Global Changesmedia_common.quotation_subjectSoil Science010603 evolutionary biology01 natural sciencesCompetition (biology)[ SDE ] Environmental SciencesNutrientBotanyColonizationNitrification enzyme activityBromus erectusmedia_common2. Zero hunger[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyMycorrhizal colonizationEcologybiologyfungifood and beveragesRoot traits15. Life on landbiology.organism_classificationAgricultural and Biological Sciences (miscellaneous)Colonisation[ SDE.MCG ] Environmental Sciences/Global ChangesDactylis glomerataAgronomyLeaf traits[SDE]Environmental SciencesShootNutrient availability[SDE.BE]Environmental Sciences/Biodiversity and EcologyDenitrification enzyme activity010606 plant biology & botanyApplied Soil Ecology
researchProduct

Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum

2003

ABSTRACT Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germin…

0106 biological sciencesFusariumCell Culture TechniquesFungus01 natural sciencesApplied Microbiology and BiotechnologyPlant RootsMicrobiologyConidium03 medical and health sciencesPlant MicrobiologyFusariumFlaxFusarium oxysporumExtracellularCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyPlant Diseases[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesEcologybiologyInoculationfood and beveragesFungi imperfectiHydrogen PeroxideHydrogen-Ion Concentrationbiology.organism_classificationKinetics[SDV.EE] Life Sciences [q-bio]/Ecology environmentCell cultureREPONSE DE LA PLANTECalcium010606 plant biology & botanyFood ScienceBiotechnology
researchProduct

Effects of mowing on fungal endophytes and arbuscular mycorrhizal fungi in subalpine grasslands

2013

International audience; In French subalpine grasslands, cessation of mowing promotes dominance of Festuca paniculata, which alters plant diversity and ecosystem functioning. One of the mechanisms underpinning such effects may be linked to simultaneous changes in the abundance of fungal symbionts such as endophytes and arbuscular mycorrhizal fungi. In field conditions, mowing reduced the abundance of the endophyte Neotyphodium sp. in leaves of F. paniculata by a factor of 6, and increased mycorrhizal densities by a factor of 15 in the soil. In greenhouse experiments, the mycorrhizal colonization of Trifolium pratense and Allium porrum increased 3- fold and 3.8- fold respectively in mown vs u…

0106 biological sciences[SDE.MCG]Environmental Sciences/Global ChangesArbuscular mycorrhizal fungiPlant ScienceAllium porrum010603 evolutionary biology01 natural sciencesEndophyteGrassland[ SDE ] Environmental SciencesVegetation dynamicsAGRICULTURAL MANAGEMENTBotanyFestuca paniculataDominance (ecology)EcosystemGrassland managementCARBOHYDRATE CONTENTEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUSLOLIUM-PERENNE2. Zero hungerPLANT DIVERSITYFestuca paniculatageography[ SDE.BE ] Environmental Sciences/Biodiversity and Ecologygeography.geographical_feature_categoryEcologybiologyPRODUCTIVITYEcological ModelingNEOTYPHODIUMPlant communityEndophyte fungi04 agricultural and veterinary sciences15. Life on landbiology.organism_classificationNeotyphodiumSOIL[ SDE.MCG ] Environmental Sciences/Global ChangesFESCUE FESTUCA-ARUNDINACEAAgronomy13. Climate actionALKALOIDS[SDE]Environmental Sciences040103 agronomy & agricultureTALL FESCUE0401 agriculture forestry and fisheries[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

Comparison of the effects of cryptogein and oligogalacturonides on tabacco cells and evidence of different forms of desensitization induced by these …

1998

Abstract The effects of cryptogein and oligogalacturonides (OGs) were compared on tobacco cells by measuring calcium influx and calcium-dependent responses including extracellular alkalinization and H 2 O 2 production. The main difference is the higher calcium influx and the sustained H 2 O 2 production induced by cryptogein compared to OGs. Amplitude and duration of calcium signalling triggered by cryptogein or OGs may explain the necrotic effect of cryptogein, and the absence of necrosis in tobacco plants treated with OGs. We used induction of alkalinization and H 2 O 2 production to investigate cryptogein effects after a first treatment with cryptogein or OGs, and reciprocally. Results s…

0106 biological sciencesNicotiana tabacumchemistry.chemical_elementStimulationPlant ScienceCalciumBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsBotanyGeneticsExtracellularComputingMilieux_MISCELLANEOUS030304 developmental biologyCalcium signaling0303 health sciencesGeneral Medicinebiology.organism_classificationElicitorCell biologyRespiratory burstchemistrySignal transductionAgronomy and Crop Science010606 plant biology & botany
researchProduct

Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane

1995

Abstract Binding of cryptogein, a proteinaceous elicitor, was studied on tobacco plasma membrane. The binding of the [125I]cryptogein was saturable, reversible and specific with an apparent Kd of 2 nM. A single class of cryptogein binding sites was found with a sharp optimum pH for binding at about pH 7.0. The high-affinity correlates with cryptogein concentrations required for biological activity in vivo.

0106 biological sciencesNicotiana tabacumBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesStructural BiologyIn vivoTobaccoGeneticsBinding siteReceptor[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesBinding SitesbiologyNicotiana tabacumChemistryAlgal ProteinsCell MembraneElicitinBiological activityCell BiologyElicitorbiology.organism_classification3. Good healthElicitorKineticsPlants ToxicMembraneBiochemistryCryptogeinPlasma membraneReceptor010606 plant biology & botany
researchProduct

Comparison of binding properties and early biological effects of elicitins in tobacco cells

1998

Abstract Elicitins are a family of small proteins secreted by Phytophthora species that have a high degree of homology and elicit defense reactions in tobacco (Nicotiana tabacum). They display acidic or basic characteristics, the acidic elicitins being less efficient in inducing plant necrosis. In this study we compared the binding properties of four elicitins (two basic and two acidic) and early-induced signal transduction events (Ca2+ influx, extracellular medium alkalinization, and active oxygen species production). The affinity for tobacco plasma membrane-binding sites and the number of binding sites were similar for all four elicitins. Furthermore, elicitins compete with one another fo…

0106 biological sciencesPhysiologyNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesCell surface receptor[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsExtracellularBinding siteComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyBinding proteinElicitinTECHNIQUE DES TRACEURSbiology.organism_classificationElicitorBiochemistryCULTURE DE CELLULESignal transduction010606 plant biology & botanyResearch Article
researchProduct

Responses of above- and below-ground fungal symbionts to cessation of mowing in subalpine grassland

2017

Abstract The cessation of mowing in subalpine grasslands promotes the dominance of Festuca paniculata leading to the reduction in plant diversity. Moreover, it affects positively the abundance of Epichloe sp. inhabiting F. paniculata leaves and negatively the soil density of arbuscular mycorrhizal fungi (AMF). We explored how the cessation of mowing influences root AMF communities in F. paniculata and the neighboring plants, and Epichloe sp alkaloids. Thirteen AMF operational taxonomical units were found. The neighboring plants affected positively the abundances of Aalpin and GLOM_7 whereas the interaction plant/management type influenced significantly Claroide_1 , GLOM_1 and GLOM_7 . The N…

0106 biological sciencesprairie alpine[SDV]Life Sciences [q-bio]alpine grasslandsPlant ScienceBiologychampignon mycorhizien010603 evolutionary biology01 natural sciencesEndophyteGrasslandEpichloe sp.BotanyFestuca paniculataDominance (ecology)symbioteEcology Evolution Behavior and SystematicsArbuscular mycorrhizal fungal communityPlant diversity2. Zero hungergeographygeography.geographical_feature_categoryEcology[ SDV ] Life Sciences [q-bio]Ecological ModelingEndophyte fungi15. Life on landbiology.organism_classificationBulk densityGrassland dynamicssymbiontMontane ecologychampignon endophyte010606 plant biology & botany
researchProduct

La mycorhize : une alliance plante-champigon. Effets bénéfiques sur les produits du terroir

2013

alliance plante-champignon[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesmycorhizeterroir[SDV]Life Sciences [q-bio][SDE]Environmental Scienceseffet[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyproduit
researchProduct

Involvement of plasma membrane proteins in plant defense responses. Analysis of the cryptogein signal transduction in tobacco

1999

International audience; Cryptogein, a 98 amino acid protein secreted by the fungus Phytophthora cryptogea, induces a hypersensitive response and systemic acquired resistance in tobacco plants (Nicotiana tabacum var Xanthi). The mode of action of cryptogein has been studied using tobacco cell suspensions. The recognition of this elicitor by a plasma membrane receptor leads to a cascade of events including protein phosphorylation, calcium influx, potassium and chloride effluxes, plasma membrane depolarization, activation of a NADPH oxidase responsible for active oxygen species (AOS) production and cytosol acidification, activation of the pentose phosphate pathway, and activation of two mitoge…

0106 biological sciencesHypersensitive responseNicotiana tabacum01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesTobacco[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimals[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyProtein phosphorylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyPlant Proteins0303 health sciencesbiologyAlgal ProteinsCell MembraneMembrane Proteinsfood and beveragesGeneral Medicinebiology.organism_classificationElicitorCell biologyCytosolPlants ToxicMembrane proteinBiochemistrySecond messenger systemREPONSE DE LA PLANTESignal transduction010606 plant biology & botanySignal Transduction
researchProduct