0000000000041074
AUTHOR
Pablo Orús
Erratum: De Teresa, J.M. et al. Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions. Micromachines 2019, 10, 799
In Section 3 [...]
Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions
This article belongs to the Special Issue Multi-Dimensional Direct-Write Nanofabrication.
Ultra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation
An ultra-fast method to directly grow metallic micro- and nano-structures is introduced. It relies on a Focused Ion Beam (FIB) and a condensed layer of suitable precursor material formed on the substrate under cryogenic conditions. The technique implies cooling the substrate below the condensation temperature of the gaseous precursor material, subsequently irradiating with ions according to the wanted pattern, and posteriorly heating the substrate above the condensation temperature. Here, using W(CO)6 as the precursor material, a Ga+ FIB, and a substrate temperature of -100 °C, W-C metallic layers and nanowires with resolution down to 38 nm have been grown by Cryogenic Focused Ion Beam Indu…
Superconducting properties of in-plane W-C nanowires grown by He+ Focused Ion Beam Induced Deposition
Focused ion beam induced deposition (FIBID) is a nanopatterning technique that uses a focused beam of charged ions to decompose a gaseous precursor. So far, the flexible patterning capabilities of FIBID have been widely exploited in the fabrication of superconducting nanostructures, using the W(CO)6 precursor mostly in combination with a focused beam of Ga+ ions. Here, the fabrication and characterization of superconducting in-plane tungsten-carbon (W-C) nanostructures by He+ FIBID of the W(CO)6 precursor is reported. A patterning resolution of 10 nm has been achieved, which is virtually unattainable for Ga+ FIBID. When the nanowires are patterned with widths of 20 nm and above, the deposit…
Critical current modulation induced by an electric field in superconducting tungsten-carbon nanowires
The critical current of a superconducting nanostructure can be suppressed by applying an electric field in its vicinity. This phenomenon is investigated throughout the fabrication and electrical characterization of superconducting tungsten-carbon (W-C) nanostructures grown by Ga+ focused ion beam induced deposition (FIBID). In a 45 nm-wide, 2.7 μm-long W-C nanowire, an increasing side-gate voltage is found to progressively reduce the critical current of the device, down to a full suppression of the superconducting state below its critical temperature. This modulation is accounted for by the squeezing of the superconducting current by the electric field within a theoretical model based on th…
Long-range vortex transfer in superconducting nanowires
Under high-enough values of perpendicularly-applied magnetic feld and current, a type-II superconductor presents a fnite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices. Here, we propose a route to transfer vortices carried by non-local motion through long distances (up to 10 micrometers) in 50nm-wide superconducting WC nanowires grown by Ga+ Focused Ion Beam Induced Deposition.…