0000000000041095

AUTHOR

Simon R. Bandler

Microcalorimeter/EBIT measurements of X-ray spectra of highly charged ions

Spectra of highly charged Ar, Kr, Xe and Fe ions, produced in an Electron Beam Ion Trap (EBIT), have been recorded in a broad X-ray energy band (0.2 keV to 10 keV) with a microcalorimeter detector. The first analysis of the Kr spectra has been completed and most of the spectral lines have been identified as transitions of B- to Al-like Kr. Line intensity ratios of Fe XVII have been measured and compared with theoretical models.

research product

Xrase: The X-Ray Spectroscopic Explorer

The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA’s scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe Kα region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2. A deep orbit allows for long, conti…

research product

The Athena X-ray Integral Field Unit (X-IFU)

Event: SPIE Astronomical Telescopes + Instrumentation, 2016, Edinburgh, United Kingdom.

research product

The performance of the ATHENA X-ray Integral Field Unit

The X-ray Integral Field Unit (X-IFU) is a next generation microcalorimeter planned for launch onboard the Athena observatory. Operating a matrix of 3840 superconducting Transition Edge Sensors at 90 mK, it will provide unprecedented spectro-imaging capabilities (2.5 eV resolution, for a field of view of 5') in the soft X-ray band (0.2 up to 12 keV), enabling breakthrough science. The definition of the instrument evolved along the phase A study and we present here an overview of its predicted performances and their modeling, illustrating how the design of the X-IFU meets its top-level scientific requirements. This article notably covers the energy resolution, count-rate capability, quantum …

research product

X-ray and gamma-ray astronomy with NTD germanium-based microcalorimeters

We report on the performance of our NTD-Ge microcalorimeters. To date, the spectral resolution for x-ray and gamma-ray lines from radioactive sources and laboratory plasmas is 4.8 eV in the entire 1 - 6 keV band and 52 eV at 60 keV. Technical details responsible for this performance are presented as well as an innovative electro-thermal approach for enhancing count-rate capability.

research product

Laboratory astrophysics survey of key x-ray diagnostic lines using a microcalorimeter on an electron beam ion trap

Cosmic plasma conditions created in an electron beam ion trap (EBIT) make it possible to simulate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources. We used a microcalorimeter for such laboratory astrophysics studies because it has a resolving power ≈1000, quantum efficiency approaching 100%, and a bandwidth that spans the X-ray energies from 0.2 keV to 10 keV. Our microcalorimeter, coupled with an X-ray optic to increase the effective solid angle, provides a significant new capability for laboratory astrophysics measurements. Broadband spectra obtained from the National Institute of Standards and Technology…

research product

A microcalorimeter spectrometer for the investigation of laboratory plasmas

We describe a cryostat and 2-stage ADR specifically designed for making measurements at the NIST EBIT (Electron Beam Ion Trap) facility. The design is compact and consists of a single helium bath with two vapor-cooled shields. The 2-stage ADR has two separate magnets and two heat switches. The interface between the EBIT and microcalorimeter array will also be described.

research product

Analysis of broadband x-ray spectra of highly charged krypton from a microcalorimeter detector of an electron-beam ion trap

Spectra of highly charged Kr ions, produced in an electron-beam ion trap (EBIT), have been recorded in a broad x-ray energy band (0.3 keV to 4 keV) with a microcalorimeter detector. Most of the spectral lines have been identified as transitions of B- to Al-like Kr. The transition energies have been determined with 0.2% uncertainty. A semi-empirical EBIT plasma model has been created to calculate a synthetic spectrum of highly charged Kr and to determine a charge state distribution of Kr ions inside the EBIT.

research product

A single stage adiabatic demagnetization refrigerator for testing x-ray microcalorimeters

A single stage Adiabatic Demagnetization Refrigerator (ADR), has been set-up at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF - Osservatorio Astronomico di Palermo G.S. Vaiana, for the development and testing of cryogenic X-ray detectors for laboratory and astrophysical applications. The ADR allows to cool detectors at temperatures below 40 mK and to maintain them at constant operating temperature for many hours. We describe the design and construction of the ADR and present test results and performances.

research product

B-MINE, the balloon-borne microcalorimeter nuclear line explorer

B-MINE is a concept for a balloon mission designed to probe the deepest regions of a supernova explosion by detecting Ti-44 emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the extent and velocity distribution of the Ti-44 emitting region. The payload introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3sigma sensitivity in …

research product

The x-ray microcalorimeter spectrometer onboard Athena

Trabajo presentado a la conferencia: "Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray" celebrada en Amsterdam (Holanda) el 1 de julio de 2012.-- et al.

research product

Testing the X-IFU calibration requirements: an example for quantum efficiency and energy resolution

With its array of 3840 Transition Edge Sensors (TESs) operated at 90 mK, the X-Ray Integral Field Unit (X-IFU) on board the ESA L2 mission Athena will provide spatially resolved high-resolution spectroscopy (2.5 eV FWHM up to 7 keV) over the 0.2 to 12 keV bandpass. The in-flight performance of the X-IFU will be strongly affected by the calibration of the instrument. Uncertainties in the knowledge of the overall system, from the filter transmission to the energy scale, may introduce systematic errors in the data, which could potentially compromise science objectives - notably those involving line characterisation e.g. turbulence velocity measurements - if not properly accounted for. Defining…

research product

The constellation-X focal plane microcalorimeter array: An NTD-germanium solution

The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral “flying” leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element spectrometers. Details of construction are presented.

research product

Emission-Line Intensity Ratios in F[CLC]e[/CLC] [CSC]xvii[/CSC] Observed with a Microcalorimeter on an Electron Beam Ion Trap

We report new observations of emission line intensity ratios of Fe XVII under controlled experimental conditions, using the National Institute of Standards and Technology electron beam ion trap (EBIT) with a microcalorimeter detector. We compare our observations with collisional-radiative models using atomic data computed in distorted wave and R-matrix approximations, which follow the transfer of the polarization of level populations through radiative cascades. Our results for the intensity ratio of the 2p6 1S0-2p53d 1P1 15.014 A line to the 2p6 1S0-2p53d 3D1 15.265 A line are 2.94 ± 0.18 and 2.50 ± 0.13 at beam energies of 900 and 1250 eV, respectively. These results are not consistent wit…

research product

NTD-GE-based microcalorimeter performance

Our group has been developing x-ray microcalorimeters consisting of neutron transmutation doped (NTD) germanium thermistors attached to superconducting tin absorbers. We discuss the performance of single pixel x-ray detectors, and describe an array technology. In this paper we describe the read-out circuit that allows us to measure fast signals in our detectors as this will be important in understanding the primary cause of resolution broadening. We describe briefly a multiplexing scheme that allows a number of different calorimeters to be read out using a single JFET. We list the possible causes of broadening and give a description of the experiment which best demonstrates the cause of the…

research product

The focal plane assembly for the Athena X-ray Integral Field Unit instrument

This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a ~ 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off…

research product

Laboratory astrophysics and microanalysis with NTD-germanium-based X-ray microcalorimeters

With the ability to create cosmic plasma conditions in the laboratory it is possible to investigate the dependencies of key diagnostic X-ray lines on density, temperature, and excitation conditions that exist in astrophysical sources with X-ray optics and a high-resolution X-ray microcalorimeter. The same instrumentation can be coupled to scanning electron microscopes or X-ray fluorescence probes to analyze the elemental and chemical composition of electronic, biological, geological and particulate materials. We describe how our microcalorimeter and X-ray optics provide significantly improved capabilities for laboratory astrophysics and microanalysis.

research product