0000000000043018
AUTHOR
Susanne Schöttler
Protein corona composition of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles correlates strongly with the amino acid composition of the protein surface
Extensive molecular dynamics simulations reveal that the interactions between proteins and poly(ethylene glycol) (PEG) can be described in terms of the surface composition of the proteins. PEG molecules accumulate around non-polar residues while avoiding the polar ones. A solvent-accessible-surface-area model of protein adsorption accurately fits a large set of data on the composition of the protein corona of poly(ethylene glycol)- and poly(phosphoester)-coated nanoparticles recently obtained by label-free proteomic mass spectrometry.
Controlling the Stealth Effect of Nanocarriers through Understanding the Protein Corona
The past decade has seen a significant increase in interest in the use of polymeric nanocarriers in medical applications. In particular, when used as drug vectors in targeted delivery, nanocarriers could overcome many obstacles for drug therapy. Nevertheless, their application is still impeded by the complex composition of the blood proteins covering the particle surface, termed the protein corona. The protein corona complicates any prediction of cell interactions, biodistribution, and toxicity. In particular, the unspecific uptake of nanocarriers is a major obstacle in clinical studies. This Minireview provides an overview of what we currently know about the characteristics of the protein …
Carbohydrate-Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona.
Whenever nanoparticles encounter biological fluids like blood, proteins adsorb on their surface and form a so-called protein corona. Although its importance is widely accepted, information on the influence of surface functionalization of nanocarriers on the protein corona is still sparse, especially concerning how the functionalization of PEGylated nanocarriers with targeting agents will affect protein corona formation and how the protein corona may in turn influence the targeting effect. Herein, hydroxyethyl starch nanocarriers (HES-NCs) were prepared, PEGylated, and modified on the outer PEG layer with mannose to target dendritic cells (DCs). Their interaction with human plasma was then s…
Aggregation Behavior of Polystyrene-Nanoparticles in Human Blood Serum and its Impact on the in vivo Distribution in Mice
The interactions between nanoparticles (NPs) and proteins in complex biological application media such as blood serum are capable of inducing aggregate formation which can lead to subsequent changes in biological activity. Here, we correlate surface charge, aggregation-tendency, and surface serum protein adsorption with cellular uptake and biodistribution in mice. Polystyrene-based NPs (80 - 170 nm) with different surface functionalizations were synthesized and incubated with human serum. Interaction of NPs with serum proteins and aggregate formation were analyzed by mass spectrometryanalysis and dynamic light-scattering. Influence of surface functionalization on specific cellular uptake an…
Tailoring the stealth properties of biocompatible polysaccharide nanocontainers.
Fundamental development of a biocompatible and degradable nanocarrier platform based on hydroxyethyl starch (HES) is reported. HES is a derivative of starch and possesses both high biocompatibility and improved stability against enzymatic degradation; it is used to prepare nanocapsules via the polyaddition reaction at the interface of water nanodroplets dispersed in an organic miniemulsion. The synthesized hollow nanocapsules can be loaded with hydrophilic guests in its aqueous core, tuned in size, chemically functionalized in various pathways, and show high shelf life stability. The surface of the HES nanocapsules is further functionalized with poly(ethylene glycol) via different chemistri…
Kohlenhydrat-basierte Nanocarrier mit spezifischem Zell-Targeting und minimalem Einfluss durch die Proteinkorona
Sobald Nanopartikel mit biologischen Flussigkeiten wie Blut in Kontakt kommen, adsorbieren Proteine auf ihrer Oberflache, welche die sogenannte Proteinkorona ausbilden. Die Wichtigkeit dieser Proteinhulle ist weitgehend anerkannt, jedoch untersuchen nur wenige Studien den Einfluss von Oberflachenfunktionalisierung der Nanocarrier auf die Proteinkorona. Vor allem die Variation der Proteinkorona von PEGylierten und zusatzlich mit Targeting-Molekulen versehenen Nanotragern und der Einfluss auf das Targeting sind nicht bekannt. Hydroxyethylstarke-Nanocarrier (HES-NCs) wurden synthetisiert, anschliesend PEGyliert und zusatzlich (“on top”) mit Mannose funktionalisiert, um dendritische Zellen (DCs…
Die Steuerung des Stealth-Effekts von Nanoträgern durch das Verständnis der Proteinkorona
Phosphonylation Controls the Protein Corona of Multifunctional Polyglycerol-Modified Nanocarriers.
Nanocarriers are a platform for modern drug delivery. In contact with blood, proteins adsorb to nanocarriers, altering their behavior in vivo. To reduce unspecific protein adsorption and unspecific cellular uptake, nanocarriers are modified with hydrophilic polymers like poly(ethylene glycol) (PEG). However, with PEG the attachment of further functional structures such as targeting units is limited. A method to introduce multifunctionality via polyglycerol (PG) while maintaining the hydrophilicity of PEG is introduced. Different amounts of negatively charged phosphonate groups (up to 29 mol%) are attached to the multifunctional PGs (Mn 2-4 kg mol-1 , Ð < 1.36) by post-modification. PGs are …
Solution Properties and Potential Biological Applications of Zwitterionic Poly(ε-N-methacryloyl-l-lysine)
Poly(e-N-methacryloyl-l-lysine) (PMALys) was synthesized by free radical polymerization yielding a zwitterionic polymer with Mw = 721 000 g mol–1. The polymer dissolves in pure water as well as in aqueous salt solution up to 5 M NaClO4 and over wide range of pH values (1.3 ≤ pH ≤ 12.7) as single chains without any sign for aggregate formation. The zwitterionic polymer shows an expanded random coil structure at and close to isoelectric conditions and further expands upon addition of acid and base, respectively. The polymer fulfills four major prerequisites for a promising nano carrier in potential biomedical applications: (1) It is biocompatible, indicated by a low cytotoxicity. (2) It does …