Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders
ZnO ceramics obtained from grained powders with different grain size by hot pressing and ceramics from tetrapods nanopowders obtained by press-less sintering have been investigated under identical conditions. Ceramics obtained by hot pressing were optically transparent but were composed of large inhomogeneous grains (d = 8–35 μm) exhibiting a substructure. Decreased values of elastic modulus within a grain and a wide defect-associated ('green') photoluminescence (PL) band at 2.2–2.8 eV in conjunction with a weak excitonic band indicate a high concentration of residual point defects in hot pressed ZnO ceramics. Utilization of more small-grained powders contributes to the formation of more un…
Characterization and thermomechanical assessment of a SiC-sandwich material for Flow Channel Inserts in DCLL blankets
Abstract Flow Channel Inserts (FCIs) are key elements in the high-temperature Dual Coolant Lead Lithium (DCLL) blanket, since they insulate electrically the flowing PbLi to avoid MHD effects and protect the steel structure from the hot liquid metal. SiC-based materials are main candidates for high-temperature FCIs, being a dense-porous SiC-based sandwich material an attractive option. The present work is focused on the development of such a SiC-based material. On the one hand, in order to assess the suitability of the concept for FCIs, the main results of a stress analysis, MHD and heat transfer simulations are summarized. On the other hand, the experimental production of the SiC-based mate…
Effect of Mechanoactivation on Interfacial Interaction in Metal/Oxide Systems
Properties of interfaces in solid state metal/oxide joints (Al/SiO2, Al/MgO, Al/glass, Mg/MgO, Mg/SiO2, In/glass etc.) are reported. The interfaces were formed by plastic deformation of metal on the oxide surface at room temperature. Their structure, chemical composition, and micromechanical properties were studied by the AFM, XRD, SIMS, optical microscopy, and precision microindentation techniques. A noticeable adhesion was observed for metals with high affinity for oxygen and only in the regions of the maximum shear stress. Formation of an interfacial reaction zone with an oxygen concentration gradient is detected. In this zone metals are nanostructured and noticeably hardened. The effect…
Interface Diffusion Controlled Sintering of Atomically Clean Surfaces of Metals
Microhardness and adhesion measurements of reactively sputtered TiN/AlN multilayer coatings deposited as function of mass-flow of nitrogen
Abstract Multilayer coatings of (Ti, Al)N x have been deposited by reactive sputtering from Ti and Al targets in a side-by-side configuration on WC and stainless steel substrates. The rotation of the substrate holder varied from 2 to 14 r.p.m. corresponding to a bilayer thickness of 0.8–8 nm. The acoustic emission scratch technique for adhesion measurements was used for studying coating performance, and critical load values for the coatings on WC substrate up to 150 N were obtained. The Vickers microhardness in the load range 0.003–2 N was measured, and in order to obtain true hardness values, an optimal range of indentation depth and coating thickness was determined. Depending on the nitro…
SiC-based sandwich material for Flow Channel Inserts in DCLL blankets: Manufacturing, characterization, corrosion tests
This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Mechanical Properties of Deformed Interfaces in Bimetallic Joints
Mechano-activated processes on metal oxide interfaces at room temperature
Solid state bonding of metal with oxide at room temperature have been studied. The properties of Al/SiO 2 , Al/glass, Al/MgO, Mg/SiO 2 , In/glass interfaces as well as to ascertain the mechanism of formation of interfaces. Structure, composition and mechanical properties were investigated using auger-spectroscopy (AES), secondary-ion mass-spectrometry (SIMS), electron microscopy and precision microindentation. The results showed marked adhesion not all over contact area but only at zones of the maximum shear stress. The effect of mechanoactivation is considered from the viewpoints of both structure formation and physico- chemical interaction of nonequilibrium systems. As a result of relaxat…
Influence of mechanoactivation on the adhesion and mechanical properties of metal/oxide interfaces
Properties of interfaces in solid state metal/oxide joints (Al/SiO2, Al/MgO, Al/glass, Mg/MgO, In/glass, Mg/SiO2 etc.) are reported. Interfaces were formed at plastic deformation of metal on the oxide surface at room temperature. Structure, composition, and micromechanical properties of the interfaces are studied by AFM, X-ray diffraction, SIMS, electron, optical microscopy, and precision microindentation. A noticeable adhesion is observed in the regions of maximum shear strain in case of metals with low oxide formation energy. Formation of a reaction zone with oxygen concentration gradient is detected in which the metal near the interface hardens. The effect of mechanoactivation is conside…
Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic
This paper discusses the characteristics of ZnO and ZnO:Ga ceramics fabricated by uniaxial hot pressing. The short-wavelength transmission limit of zinc oxide ceramics is in the 370-nm region; the long-wavelength limit is determined by the free-charge-carrier concentration and lies in the interval from 5 to 9 μm. The total transmittance of such ceramics in the visible and near-IR regions is about 70% when the sample is 0.5 mm thick. The luminescence spectrum is represented by a broad emission band with maximum at 580 nm, having a defect nature. The introduction of 0.03–0.1 mass % gallium into the zinc oxide structure inhibits grain growth and increases the free-charge-carrier concentration …
Mechanical behavior and limits to the microhardness testing of hard multilayer coatings on soft substrates
Multilayer coatings of (Ti, Al) N x , (Ti, C)N x and (Nb, C)N x with bilayer thickness of 0.8-8 nm have been deposited by reactive sputtering on stainless steel substrates. Vickers microhardness measurements in the load range of 3.10 -3 to 1 N were performed using a self-adjusting tester. It has been shown that in order to obtain the true hardness of multilayer coatings on a softer substrate, the indentation depth should not exceed about 10% of the coating thickness. Indentation criteria for polycrystalline, amorphous and nanostructured multilayer coatings are compared. The obtained criterion for multilayer coatings is close to that for amorphous films.
Nanoindentation and photoluminescence characterization of ZnO thin films and single crystals
In this work an optical and micromechanical properties of ZnO films deposited on glass by simple method based on the mechanoactivated oxidation have been investigated and compared with those of bulk ZnO single crystal and commercial ZnO films. Results showed that investigated ZnO films have stable high adhesion with glass and can form grained structure with hardness 8–10 GPa or whiskers nanostructure with high hardness 18–20 GPa. Young’s modulus is in range from 80 to 120 GPa. Optical properties of obtained ZnO films with whiskers structure are typical for transparent high quality ZnO single crystal. These coatings also exhibit a photo-electric response which reflects on the change in resis…
Ultrafast luminescence of Ga- and In-doped ZnO ceramics
The work of authors (a-c) was financially supported by Russian Foundation for Basic Research (RFBR, Russia) and the work of the last author (d) had financial support from State Education Development Agency (VIAA, Latvia) . All of that was approved as a result of ERA.Net RUS PLUS 2017 joint call for proposals. Here is the link for the joint call for reference: https://www.eranet-rus.eu/en/196.php .
Magnetic field effect on the corrosion processes at the Eurofer–Pb–17Li flow interface
Abstract Structural and elemental analyses of the RAFM steel (EUROFER 97) interface with flowing Pb–17Li eutectic (velocity 5 cm/s at 550 °C, 1000 h) under the action of a strong magnetic field (B = 1.7 T) were performed using optical microscopy, SEM, confocal microscopy, precision micro-hardness methods, SIMS and point or line-scan EDX analyses. The results show that the magnetic field induces a faster crushing of martensite into the grains, a deeper dissolution of grain boundaries, an enhancement of the Fe and Cr mass transfer and a fast detachment of corrosion layers due to MHD effects.
Mechanical Behaviors of (As2S3)100-x(AgI)x Bulk Glasses and Thin Films
ZnO and ZnO:Ga Ceramics for Advanced Scintillators
The undoped ZnO reveals narrow luminescence bands located close to fundamental absorption edge, known as near band luminescence (NBL) and defects related wide luminescence band within visible range of spectrum. NBL decay is in sub-nanosecond range and it is promising for fast scintillator development. However, the defects luminescence decay is in microsecond range and it is disturbing for fast scintillators. Dopants strongly change the luminescence properties, mainly the intensity and decay time and that is the cause for intense study of doped ZnO luminescence properties. Thus the study of luminescent properties of undoped ZnO and doped ZnO:Ga ceramics was carried out. The dependence of the…
Mechanical properties and accommodation processes on metallic interfaces
Bimetallic joints Al/Pb, Al/Sn, Pb/Sn, Pb/Pb, etc. with clean interfaces, obtained by a special cold welding method, are used as a model of phase boundaries for investigation of accommodation processes and strength properties of interfaces. To reduce the volume diffusion-induced relaxation processes, investigations were carried out at relatively low temperatures 0.1-0.5 T m . The role of surface diffusion and the effect of phase boundary energy on the healing of micropore ensembles on interfaces was investigated. The accommodation processes on the phase boundaries are considered as a result of mechanoactivation of both the interaction and structure formation of such non-equilibrium systems.…
Grain boundary ridges slow dawn grain boundary motion: In-situ observation
Abstract The impact of grain boundary (GB) ridge on motion of high-angle GB in Zn was studied. The steady-state motion of faceted GB half-loop with [ 10 1 ¯ 0 ] tilt GB and GB ridge was recorded in-situ. The temperatures of faceting–roughening transition were experimentally defined for three GB half-loops. Above the transition temperature GB half-loops had GB “rough-to-rough” ridge with continuously curved GB segments. Below the transition temperature a facet appeared and coexisted with two “facet-to-rough” ridges. For the first time we could extract mobility of “rough-to-rough” and “rough-to-facet” ridges and bring out clearly that GB ridge slows down GB motion. Present removes contradicti…
Nanostructured metal/oxide coatings
Al based nanocomposite coatings on Cu and glass substrates were obtained in the conditions of severe shear stresses by deformation scheme similar to that of friction. Structure, composition and micromechanical properties were investigated using AFM, XRD, SIMS, electron, optical microscopy and precision microindentation techniques. Coatings are characterized by the high microhardness and good adhesion to the substrates. This is determined by the formation of nanostructured Al-oxide composite stabilized by the presence of oxidized interlayers, which are barriers for the grain growth and intermetallic phase formation. The annealing in vacuum leads to the development of oxygen redistribution pr…
The role of nanopowder particle surfaces and grain boundary defects in the sintering of ZnO ceramics
This work focuses on the characteristics of sintered ZnO ceramics and explores the role of source powder morphology in the process of sintering. The source ZnO powders had grained (d = 100 nm) and tetrapod-like (d=50-100 nm, l=3−10 μm) morphologies, they were compacted and sintered at 1200° C. The results have shown that ceramics sintered from the grained powder exhibit relatively high (8%) porosity at grain boundaries and as cavities within grains, which facilitates brittleness. Photoluminescence spectra for these ceramics besides a narrow exitonic band contain a broad "green" luminescence band attributed to defect states. The second ceramics sintered from the tetrapod-like powder has lowe…
<title>Micromechanical properties of AIN, TiN, and AIN/TiN nanostructured multilayer coatings</title>
Coatings of AlN, TiN and nanostructured multilayer AlN/TiN have been deposited by reactive sputtering on sapphire, tungsten carbide (WC) and stainless steel substrates. The microhardness, adhesion and formation of cracks under indentation tests, were investigated. It was found that the adhesion of coatings on steel was higher, than on WC for all investigated samples. Nanostructured multilayer AlN/TiN films have the best adhesion and fracture toughness both on the hard (WC) and on the soft (stainless steel) substrates if compared with that for AlN and TiN "single layer" coatings. The effect of γ-radiation on mechanical properties of transparent AlN films was investigated. After the exposure …
Hardening of Steel Perforated Tape by Nd:YAG Laser
One of the directions of application of the perforated metal material is their use as cutting elements in the production of processing tools. In this case it is necessary to carry out hardening of cutting surfaces to increase their hardness. One of the methods of hardening metals could be laser treatment. Therefore, the present work is a study of the effect of Nd:YAG laser radiation on the microstructure and hardness of fragments formed from steel perforated tape. Different laser scan speeds (doses) were used in the experiments. The results have shown that the increase the microhardness of 30-40% after the laser treatment of steel perforated tape in the surface layer in a depth range up to …
Surface processing of TlBr single crystals used for radiation detectors
Abstract The processing method for obtaining the high-quality surfaces of TlBr single crystals, providing removal of a mechanically destroyed surface layer by chemical etching, is developed. The crystals grown from the melt of purified materials by the Bridgman–Stockbarger method were used for the experiments. The Vickers microhardness as a structure-sensitive technique was used in a study of the crystal quality and properties of the plastically deformed surface layer created by cutting. It was shown that even under highly accurate conditions of cutting, the depth of the work-hardened surface layer with a high density of dislocations, vacancies and other structural defects exceeds 20 μm. Th…
Deformation behavior of nanostructured ZnO films on glass
Abstract Nanostructured ZnO films on glass substrate were studied by nanoindentation, scanning electron and atomic force microscopy. The films were obtained by a straightforward mechanoactivated oxidation method. The morphology of the obtained films was grained with a grain size in the range 50–100 nm and the thickness was approximately 2 μm. A detailed deformation behavior of ZnO films, critical parameters and indentation induced plastic deformation mechanisms were determined in correlation to bulk ZnO, Si single crystal and commercial ZnO films. In comparison to a single crystal ZnO, nanostructured films exhibit increased hardness (9 GPa); however, the Young's modulus is decreased (120 GP…
The Role of Diffusion Accommodation and Phase Boundary Wetting in the Deformation Behaviour of Ultrafine Grained Sn-Pb Eutectic
Mechanical properties, microstructure of the Sn–38wt. %Pb eutectic and the development of deformation - induced diffusion processes on interphase boundaries (IB) were investigated. Experiments were carried out both in deformed and annealed states of eutectic using micro- and nanoindentation, SEM, AFM and optical microscopy techniques. It was found that the deformation of the annealed alloy is localized at the Pb/Sn interphase boundaries and occurs by grain boundary sliding (GBS) accompanied by sintering micropore processes under the action of the capillary forces on the Pb/Sn IB. During severe plastic deformation of Sn-Pb eutectic phase transition in the Sn grain boundary occurs. This defor…
Direct observation of strain-induced non-equilibrium grain boundaries
Abstract The grain boundary (GB) wetting by the melt and second solid phase has been studied in the Sn–Pb system both in equilibrium conditions and during continuous strain. The percentage of Sn/Sn GBs completely wetted by the melt increases from 80% at eutectic temperature Te=183 °C to 100% at 220 °C. The percentage of Pb/Pb GBs completely wetted by the melt increases from 0% at Te to 100% at 270 °C. Below Te only incomplete wetting of Pb/Pb GBs by solid Sn and Sn/Sn GBs by solid Pb has been observed after long annealing. However, during strain the lattice dislocations are continuously absorbed by GBs increasing the GB energy. As a result, the complete wetting of such non-equlibrium Sn/Sn …
Obtaining of nanostructured ZnO coatings using mechanoactivated oxidation
The concept to use nanostructured state of metal at the instant of destruction in air environment was used to obtain nanostructured Zn-ZnO coatings on glass and quartz by mechanical method. Subsequent annealing in the ambient atmosphere, annealing in vacuum and irradiation with 532-nm YAG:Nd laser were used to obtain completely oxidized, transparent ZnO coatings. The saturated with oxygen nanostructured coatings were transformed into nanostructured ZnO coatings after annealing above 773K or irradiation with laser (allowing to reach 673K) in ambient atmosphere. AFM and SEM images show that after annealing ZnO coatings have multi-shaped structure. The formation of ZnO need-like whiskers (d = …
Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets
This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Adhesion and interfacial reactions on metal/oxide interface during plastic deformation at room temperature
Properties of interfaces in solid state metal/oxide joints (Al/SiO2, Al/MgO, Al/glass, Mg/MgO, Mg/SiO2, In/glass etc.) are reported. The interfaces were formed at plastic deformation of metal on the oxide surface at room temperature. Their structure, chemical composition, and micromechanical properties were studied by the AFM, XRD, SIMS, optical microscopy, and precision microindentation techniques. A noticeable adhesion was observed for metals with high affinity for oxygen and only in the regions of the maximum shear stress. Formation of an interfacial reaction zone with an oxygen concentration gradient is detected. In this zone metals are nanostructured and noticeably hardened. The effect…
Comparative Study on Micromechanical Properties of ZnO:Ga and ZnO:In Luminiscent Ceramics
The research has been supported by the Project ERANET RUS_ST#2017-051(Latvia) and #18-52-76002 (Russia). The Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework, Program H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2.
Surface Development of (As2S3)1–x (AgI)x Thin Films for Gas Sensor Applications
Thin (As2S3)100−x(AgI)x (x = 0–40) films were deposited by thermal vacuum evaporation from the respective bulk glasses; their structure and morphology before and after illumination with light have been studied by scanning electron microscopy (SEM). As-deposited films show fractional evaporation and surface inhomogeneities but after illumination they become uniform on the surface and in the depth as revealed by SEM top-view and cross-section images. Mechanical parameters like stress and microhardness of as-prepared and illuminated films were also investigated. The results from the stress measurements show variation in both the sign and the magnitude of the values with increasing AgI content …
ZnO – Yb2O3 composite optical ceramics: Synthesis, structure and spectral-luminescent properties
International audience; Zinc oxide optical ceramics containing 0 – 2 wt% ytterbium are prepared byuniaxial hot pressing of commercial oxides at 1150 and 1180 °C. The ceramics have themain crystalline phase of hexagonal wurtzite-type ZnO. Ytterbium ions do not enter theZnO crystals but form a cubic sesquioxide phase of Yb2O3 located at the ZnO grainboundaries. Yb acts as an inhibitor for the ZnO grain growth. The ceramics exhibittransmittance up to 60% in the visible. Their transmission in the infrared is determinedby the free charge carrier absorption. The Yb3+ ions are found in C2 and C3i sites in Yb2O3crystals. Under X-ray excitation, the ceramics exhibit intense luminescence bands in the…
Reactive sputtering of nanostructured multilayer coatings and their tribological properties
Abstract The present study describes and reports on reactive sputtering of nanostructured multilayer coatings. A 3 μm coating for instance may contain up to a few thousand bilayers of two different film materials, and in order to achieve this, a substrate holder rotates through two different sputtering zones in an Alcatel SC 650 sputtering equipment with metal and carbon cathodes operating concurrently in the so-called side-by-side configuration. In reactive sputtering of nitrides, reactive nitrogen was controlled very accurately in order to establish controllable points on a total sputtering pressure versus nitrogen flow curve. Nanostructured multilayer coatings of the type MeN/C–N were de…
Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators
Transparent ZnO ceramics are of interest for use as material for high-efficiency fast scintillators. Doping ZnO ceramics in order to improve complex of their properties is a promising direction. In the present research, the role of indium in the ZnO nanopowders surface interactions and in the change of microstructures and photoluminescence (PL) characteristics of sintered cera-mics is considered. Undoped and 0.13 wt% In doped ZnO ceramics are obtained by hot pressing sintering. It has been found that indium leads to the transition of initially faceted ZnO particles to rounded, contributing to good sintering with formation of diffusion active grain boundaries (GBs). Unlike ZnO ceramics, ZnO:…
Role of Diffusion in Superplasticity and Brittleness of Fine-Grained Binary Eutectics
Mechanical properties of interphase boundaries (IB), stability of defects and microstructure in heavily deformed binary eutectics (Al-Sn, Zn-Sn, Pb-Sn, Cd-Sn, Bi-Sn) have been investigated at room temperature. Experiments were carried out on atomically clean surfaces of alloys and on bimetallic joints with clean interface. It has been shown that after severe deformation the phases are strengthened and relaxation processes occur mainly on the boundaries in all eutectics. For superplastic eutectics with low interphase boundary energy the intensive development of the diffusion – controlled processes of self- healing, sintering, segregation and enveloping were observed. These diffusion processe…
Properties of ZnO coatings obtained by mechanoactivated oxidation
In this work a new method based on the mechanoactivated oxidation has been applied for obtaining thin nanostructured transparent ZnO coatings on glass. Zn has been transferred onto a glass substrate at room temperature using a quickly rotating steel wire brush. Afterwards by subsequent annealing it is modified into a transparent ZnO coating. The temperature range in which formation of the needle-like (whiskers) structure and transition to the fine-grained structure occurs has been determined. The interrelation between physical properties and the change of microstructure of the ZnO coatings has been shown.
Low-K factor of SiO2 layer on Si irradiated by YAG:Nd laser
Abstract The change of optical and electrical properties of SiO2 layer on Si single crystal exposed to YAG:Nd laser radiation has been found experimentally. The second harmonic of YAG:Nd laser was used as a source of light. Before irradiation the SiO2 layer with thickness 0.75 μm had red color in reflecting light due to the interference. After irradiation with the laser with intensity of more than 3.5 MW/cm2 red color changed to yellow. However, samples with thickness 0.21 μm did not change color after irradiation. We explain such peculiarities of optical properties by change of optical path. Capacity (C) measurements of SiO2 layer with thickness 0.21 μm by the method of capacity–voltage ch…