0000000000055709
AUTHOR
A. F. Habib
Radiation hard monolithic CMOS sensors with small electrodes for High Luminosity LHC
Abstract The upgrade of the tracking detectors for the High Luminosity-LHC (HL-LHC) requires the development of novel radiation hard silicon sensors. The development of Depleted Monolithic Active Pixel Sensors targets the replacement of hybrid pixel detectors with radiation hard monolithic CMOS sensors. We designed, manufactured and tested radiation hard monolithic CMOS sensors in the TowerJazz 180 nm CMOS imaging technology with small electrodes pixel designs. These designs can achieve pixel pitches well below current hybrid pixel sensors (typically 50 × 50 μ m ) for improved spatial resolution. Monolithic sensors in our design allow to reduce multiple scattering by thinning to a total si…
Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip
Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…
Design of large scale sensors in 180 nm CMOS process modified for radiation tolerance
International audience; The last couple of years have seen the development of Depleted Monolithic Active Pixel Sensors (DMAPS) fabricated with a process modification to increase the radiation tolerance. Two large scale prototypes, Monopix with a column drain synchronous readout, and MALTA with a novel asynchronous architecture, have been fully tested and characterized both in the laboratory and in test beams. This showed that certain aspects have to be improved such as charge collection after irradiation and the output data rate. Some improvements resulting from extensive TCAD simulations were verified on a small test chip, Mini-MALTA. A detailed cluster analysis, using data from laboratory…
Latest Developments and Results of Radiation Tolerance CMOS Sensors with Small Collection Electrodes
The development of radiation hard Depleted Monolithic Active Pixel Sensors (DMAPS) targets the replacement of hybrid pixel detectors to meet radiation hardness requirements of at least 1.5e16 1 MeV neq/cm2 for the HL-LHC and beyond. DMAPS were designed and tested in the TJ180 nm TowerJazz CMOS imaging technology with small electrodes pixel designs. This technology reduces costs and provides granularity of 36.4x36.4 um2 with low power operation (1 uW/pixel), low noise of ENC < 20 e-, a small collection electrode (3 um) and fast signal response within 25 ns bunch crossing. This contribution will present the latest developments after the MALTA and Mini-MALTA sensors. It will illustrate the imp…
Mini-MALTA: Radiation hard pixel designs for small-electrode monolithic CMOS sensors for the High Luminosity LHC
Journal of Instrumentation 15(02), P02005 (2020). doi:10.1088/1748-0221/15/02/P02005