0000000000060645
AUTHOR
T. Hebbeker
Search for the pair production of scalar top quarks in the acoplanar charm jet final state in collisions at
A search for the pair production of scalar top quarks, {bar t}, has been performed in 360 pb{sup -1} of data from p{bar p} collisions at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron collider. The {bar t} decay mode considered is {bar t} {yields} c{bar {chi}}{sub 1}{sup 0}, where {bar {chi}}{sub 1}{sup 0} is the lightest supersymmetric particle. The topology analyzed therefore consists of a pair of acoplanar heavy-flavor jets with missing transverse energy. The data show good agreement with the standard model expectation, and a 95% C.L. exclusion domain in the (m{sub {tilde t}}, m{sub {tilde {chi}}{sub 1}{sup 0}}) plane has been determined, exten…
Measurement of the cosmic-ray energy spectrum above 2.5×1018 eV using the Pierre Auger Observatory
We report a measurement of the energy spectrum of cosmic rays for energies above 2.5×10^18 eV based on 215,030 events recorded with zenith angles below 60°. A key feature of the work is that the estimates of the energies are independent of assumptions about the unknown hadronic physics or of the primary mass composition. The measurement is the most precise made hitherto with the accumulated exposure being so large that the measurements of the flux are dominated by systematic uncertainties except at energies above 5×10^19 eV. The principal conclusions are(1) The flattening of the spectrum near 5×10^18 eV, the so-called "ankle,"is confirmed.(2) The steepening of the spectrum at around 5×10^19…
Measurement of the top quark mass in the dilepton channel
We present a measurement of the top quark mass in the dilepton channel based on approximately 370/pb of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m_t = 178.1 +/- 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^\circ$ and energies in excess of 4 EeV ($4 \times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional informa…
A search for point sources of EeV neutrons
A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.
Search for scalar leptoquarks in the acoplanar jet topology in pp¯ collisions at s=1.96 TeV
A search for leptoquarks has been performed in 310 pb{sup -1} of data from p{bar p} collisions at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider. The topology analyzed consists of acoplanar jets with missing transverse energy. The data show good agreement with standard model expectations, and a lower mass limit of 136 GeV has been set at the 95% C.L. for a scalar leptoquark decaying exclusively into a quark and a neutrino.
Ultra-High Energy Neutrinos at the Pierre Auger Observatory
The observation of ultrahigh energy neutrinos (UHE nu s) has become a priority in experimental astroparticle physics. UHE nu s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going nu) or in the Earth crust (Earth-skimming nu), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and …
Search for Stopped Gluinos frompp¯Collisions ats=1.96 TeV
Long-lived, heavy particles are predicted in a number of models beyond the standard model of particle physics. We present the first direct search for such particles' decays, occurring up to 100 h after their production and not synchronized with an accelerator bunch crossing. We apply the analysis to the gluino (g), predicted in split supersymmetry, which after hadronization can become charged and lose enough momentum through ionization to come to rest in dense particle detectors. Approximately 410 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected with the D0 detector during Run II of the Fermilab Tevatron collider are analyzed in search of such "stopped gluinos" decaying in…
Observation and Properties of the Orbitally ExcitedBs2*Meson
We report the direct observation of the excited L=1 state B_{s2}* in fully reconstructed decays to B+K-. The mass of the B_{s2}* meson is measured to be {5839.6 +- 1.1 (stat.) +- 0.7 (syst.) MeV/c^2, and its production rate relative to the B+ meson is measured to be [1.15 +- 0.23 (stat.) +- 0.13 (syst.)] %.
Measurement of theΛbLifetime in the Exclusive DecayΛb→J/ψΛ
We have measured the {lambda}{sub b} lifetime using the exclusive decay {lambda}{sub b}{yields}J/{psi}{lambda}, based on 1.2 fb{sup -1} of data collected with the D0 detector during 2002-2006. From 171 reconstructed {lambda}{sub b} decays, where the J/{psi} and {lambda} are identified via the decays J/{psi}{yields}{mu}{sup +}{mu}{sup -} and {lambda}{yields}p{pi}, we measured the {lambda}{sub b} lifetime to be {tau}({lambda}{sub b})=1.218{sub -0.115}{sup +0.130}(stat){+-}0.042(syst) ps. We also measured the B{sup 0} lifetime in the decay B{sup 0}{yields}J/{psi}({mu}{sup +}{mu}{sup -})K{sub S}{sup 0}({pi}{sup +}{pi}{sup -}) to be {tau}(B{sup 0})=1.501{sub -0.074}{sup +0.078}(stat){+-}0.050(sy…
Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory
To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.
Measurement of the differential cross section for the production of an isolated photon with associated jet in pp¯ collisions at s=1.96 TeV
The process ppbar -> photon + jet + X is studied using 1.0 fb^-1 of data collected by the D0 detector at the Fermilab Tevatron ppbar collider at a center-of-mass energy sqrt(s)=1.96 TeV. Photons are reconstructed in the central rapidity region |y_gamma|<1.0 with transverse momenta in the range 3015 GeV. The differential cross section d^3sigma/dPt_gamma dy_gamma dy_jet is measured as a function of Pt_gamma in four regions, differing by the relative orientations of the photon and the jet in rapidity. Ratios between the differential cross sections in each region are also presented. Next-to-leading order QCD predictions using different parameterizations of parton distribution functions and theo…
Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory
Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming τ neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in ∼ 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an Eν -2 spectrum in the energy range 1.0 × 1017 eV -2.5 × 1019 eV is E2 dNν/dEν < 4.4 × 10-9 GeV cm-2 s-1 sr-1, placing str…
Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory
We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4,8] EeV and $E\geq 8$ EeV, the most significant signal is a dipolar modulation in right ascension at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV. The growth can be fitted with a power law with index $\beta=0.79\pm 0.19$. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered. Addi…
Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory
Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.
The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory
In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…
Search for scalar top quarks in the acoplanar charm jets and missing transverse energy final state in pp¯ collisions at s=1.96 TeV
We present a search for the pair production of scalar top quarks, $\tilde{t}$, using 995 pb$^{-1}$ of data collected in $p\bar{p}$ collisions with the D0 detector at the Fermilab Tevatron Collider at $\sqrt{s} = 1.96$ TeV. Both scalar top quarks are assumed to decay into a charm quark and a neutralino ($\tilde{\chi}^{0}_{1}$), where $\tilde{\chi}^{0}_{1}$ is the lightest supersymmetric particle. This leads to a final state with two acoplanar charm jets and missing transverse energy. We find the yield of such events to be consistent with the standard model expectation, and exclude sets of $\tilde{t}$ and $\tilde{\chi}^{0}_{1} $ masses at the 95% C.L. that substantially extend the domain excl…
Search forZγevents with large missing transverse energy inpp¯collisions ats=1.96 TeV
We present the first search for new phenomena in Z gamma final states with large missing transverse energy using data corresponding to an integrated luminosity of 6.2 fb(-1) collected with the D0 experiment in p (p) over bar collisions at root s 1.96 TeV. This signature is predicted in gauge-mediated supersymmetry-breaking models, where the lightest neutralino (chi) over tilde (0)(1) is the next-to-lightest supersymmetric particle and is produced in pairs, possibly through decay from heavier supersymmetric particles. The (chi) over tilde (0)(1) can decay either to a Z boson or a photon and an associated gravitino that escapes detection. We exclude this model at the 95% C.L. for supersymmetr…
Limits on point-like sources of ultra-high-energy neutrinos with the Pierre Auger Observatory
With the Surface Detector array (SD) of the Pierre Auger Observatory we can detect neutrinos with energy between 1017 eV and 1020 eV from point-like sources across the sky, from close to the Southern Celestial Pole up to 60 in declination, with peak sensitivities at declinations around ∼-53 and ∼+55, and an unmatched sensitivity for arrival directions in the Northern hemisphere. A search has been performed for highly-inclined air showers induced by neutrinos of all flavours with no candidate events found in data taken between 1 Jan 2004 and 31 Aug 2018. Upper limits on the neutrino flux from point-like steady sources have been derived as a function of source declination. An unrivaled sensit…
Identifying clouds over the Pierre Auger Observatory using infrared satellite data
We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.
Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory
We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direc- tion and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cos- mic rays. We describe the largest multiplets found an…
Search for techniparticles in e +jets events at D0
We search for the technicolor process ppbar -> rho_T/omega_T ->W+pi_T in events containing one electron and two jets, in data corresponding to an integrated luminosity of 390 pb-1, recorded by the D0 experiment at the Fermilab Tevatron. Technicolor predicts that technipions, pi_T, decay dominantly into b-bbar, b-cbar, or bbar-c, depending on their charge. In these events b and c quarks are identified by their secondary decay vertices within jets. Two analysis methods based on topological variables are presented. Since no excess above the standard model prediction was found, the result is presented as an exclusion in the pi_T vs. rho_T mass plane for a given set of model parameters.
Measurement of the pp¯→W+b+X production cross section at s=1.96 TeV
We present a measurement of the cross section for $W$ boson production in association with at least one {$b$-quark} jet in proton-antiproton collisions. The measurement is made using data corresponding to an integrated luminosity of 6.1\ifb recorded with the D0 detector at the Fermilab Tevatron \ppbar Collider at $\sqrt{s}=1.96$ TeV. We measure an inclusive cross section of {$\sigma(W \sim(\to\mu\nu) + b + X) = 1.04 \pm 0.05\thinspace$(stat.) $\pm 0.12 \thinspace$(syst.) pb} and $\sigma(W (\to e\nu) + b + X) = 1.00$ \pm 0.04 \thinspace$(stat.) $\pm 0.12 \thinspace$(syst.) pb in the phase space defined by $p_T^\nu > 25$ GeV, $p_T^{\text{$b$-jet}}>20$ GeV, $|\eta^{\text{$b$-jet}}| 20$ GeV and…
Measurement of the ratios of the Z/γ∗+⩾n jet production cross sections to the total inclusive Z/γ∗ cross section in pp¯ collisions at s=1.96 TeV
We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 340 pb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
A Targeted Search for Point Sources of EeV Neutrons
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets”, in addition to the search for a neutron flux from the Galactic Center or from the Galactic Plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. …
Measurement of the Semileptonic Branching Ratio ofBs0to an Orbitally ExcitedDs**State:Br(Bs0→Ds1−(2536)μ+νX)
In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.
Search for the lightest scalar top quark in events with two leptons in pp¯ collisions at s=1.96 TeV
Abstract We report results of a search for the pair production of the lightest supersymmetric partner of the top quark, t ˜ 1 , using a data set corresponding to an integrated luminosity of 1 fb −1 collected by the DO detector at a p p ¯ center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Both scalar top quarks are assumed to decay into a b quark, a charged lepton and a scalar neutrino. The search is performed in the electron plus muon and dielectron final states. The signal topology consists of two isolated leptons, missing transverse energy, and jets. We find no evidence for this process and exclude regions of parameter space in the framework of the minimal supersymmetric…
Calibration of the underground muon detector of the Pierre Auger Observatory
To obtain direct measurements of the muon content of extensive air showers with energy above $10^{16.5}$ eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 $\mathrm{m^2}$-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m$^2$ close to the intersection of the shower axis with the ground to much less than one per m$^2$ when far away, the necessary bro…
Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory
With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60 and 84. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km2 with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or sc…
Combination of CDF and D0 measurements of the W boson helicity in top quark decays
Aaltonen, T. et al.
Search for pair production of second generation scalar leptoquarks
We report on a search for the pair production of second generation scalar leptoquarks (LQ) in ppbar collisions at the center of mass energy sqrt(s)=1.96 TeV using a data set corresponding to an integrated luminosity of 1.0 fb-1 collected with the D0 experiment at the Fermilab Tevatron Collider. Topologies arising from the LQLQbar->muqnuq and LQLQbar->muqmuq decay modes are investigated. No excess of data over the standard model prediction is observed and upper limits on the leptoquark pair production cross section are derived at the 95% C.L. as a function of the leptoquark mass and the branching fraction beta for the decay LQ->muq. These are interpreted as lower limits on the lepto…
Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…
Erratum to: “Search for particles decaying into a Z boson and a photon in pp¯ collisions at s=1.96 TeV” [Phys. Lett. B 641 (2006) 415]
Search for particles decaying into a Z boson and a photon in collisions p (p)over-bar at root s = 1.96 TeV (vol 641, pg 415, 2006)
Measurement of the isolated photon cross section in pp¯ collisions at s=1.96 TeV
The cross section for the inclusive production of isolated photons has been measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity |eta|<0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.
Erratum to: “Measurement of the isolated photon cross section in pp¯ collisions at s=1.96 TeV” [Phys. Lett. B 639 (2006) 151]
Measurement of the isolated photon cross section in p(p)over-bar collisions at root s = 1.96 TeV (vol 639, pg 151, 2006)
Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory
We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, ~d⊥, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the “East-West” method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend …
A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory
The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierr…
Search for a Higgs boson produced in association with a Z boson
We describe a search for the Standard Model Higgs boson with a mass of 105 GeV/c(2) to 145 GeV/c(2) in data corresponding to an integrated luminosity of approximately 450 pb(-1) collected with the D phi detector at the Fermilab Tevatron p (p) over bar collider at a center-of-mass energy of 1.96 TeV. The Higgs boson is required to be produced in association with a Z boson, and the Z boson is required to decay to either electrons or muons with the Higgs boson decaying to a b (b) over bar pair. The data are well described by the expected background, leading to 95% confidence level cross section upper limits sigma (p (p) over bar -> ZH) x B(H -> b (b) over bar) in the range of 3.1 pb to 4.4 pb.
Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory
A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1-2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.027, 0.009, 0.008, 0.008 and 0.007 km-2 sr-1 yr-1 are derived at 95% C.L. for ener…
Measurement of thett¯production cross section inpp¯collisions ats=1.96 TeVusing soft electronb-tagging
The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 × 1017 eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.
Zγ production and limits on anomalous ZZγ and Zγγ couplings in pp¯ collisions at s=1.96 TeV
We present a study of eey and mu mu gamma events using 1109 (1009) pb-(1) of data in the electron (muon) channel, respectively. These data were collected with the DO detector at the Fermilab Tevatron pp collider at Is = 1.96 TeV. Having observed 453 (515) candidates in the eey (jtAy) final state, we measure the Z gamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta Rey > 0.7, and invariant mass of the di-lepton pair Mee > 30 GeV/(2)(c), to be 4.96 0.30(stat. + syst.) zE 0.30(lumi.) pb, in agreement with the Standard Model prediction of 4.74 0.22 pb. This is the most precise Zy cross section measurement at a hadron col…
Search for flavor-changing-neutral-current D meson decays
We study the flavor-changing-neutral-current process c to u mu+ mu- using 1.3 fb^-1 of p p bar collisions at sqrt(s) = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We see clear indications of the Ds+ and D+ to phi pi+ to mu+ mu- pi+ final states with significance greater than four standard deviations above background for the D+ state. We search for the continuum decay of D+ to pi+mu+mu- in the dimuon invariant mass spectrum away from the phi resonance. We see no evidence of signal above background and set a limit of B(D+ to pi+mu+mu-) < 3.9 x 10^-6 at the 90% C.L. This limit places the most stringent constraint on new phenomena in the c to u mu+ mu- t…
Search for R-parity violating supersymmetry via the LLE¯ couplings λ121, λ122 or λ133 in pp¯ collisions at s=1.96 TeV
A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings lambda_121, lambda_122, or lambda_133 is presented. The data, corresponding to an integrated luminosity of L~360/pb, were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of sqrt(s)=1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mumul, and eetau (l=e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the …
Measurement of the ratio of the pp¯→W+c-jet cross section to the inclusive pp¯→W+jets cross section
We present a measurement of the fraction of inclusive W +jets events produced with net charm quantum number 11, denoted W + c-jet, in p collisions at root s = 1.96 TeV using approximately 1 fb(-1) of data collected by the DO detector at the Fermilab Tevatron Collider. We identify the W +jets events via the leptonic W boson decays. Candidate W + c-jet events are selected by requiring a jet containing a muon in association with a reconstructed W boson and exploiting the charge correlation between this muon and W boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of W + c-jet events in the inclusive W +jets sample for jet PT > 20 GeV and ps…
Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory
The energy spectrum of ultra-high energy cosmic rays above 10$^{18}$ eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confiden…
Measurement of the muon charge asymmetry from W boson decays
We present a measurement of the muon charge asymmetry from W boson decays using 0.3 fb^{-1} of data collected at \sqrt{s}=1.96 GeV between 2002 and 2004 with the D0 detector at the Fermilab Tevatron ppbar Collider. We compare our findings with expectations from next-to-leading-order calculations performed using the CTEQ6.1M and MRST04 NLO parton distribution functions. Our findings can be used to constrain future parton distribution function fits.
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ‘‘hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data coll…
Search for supersymmetry in di-photon final states at s=1.96 TeV
We report results of a search for supersymmetry (SUSY) with gauge-mediated symmetry breaking in di-photon events collected by the DO experiment at the Fermilab Tevatron Collider in 2002-2006. In 1.1 fb(-1) of data, we find no significant excess beyond the background expected from the standard model and set the most stringent lower limits to date for a standard benchmark model on the lightest neutralino and chargino masses of 125 GeV and 229 GeV, respectively, at 95% confidence.
Search for particles decaying into a Z boson and a photon in pp¯ collisions at s=1.96 TeV
Abstract We present the results of a search for a new particle X produced in p p ¯ collisions at s = 1.96 TeV and subsequently decaying to Zγ. The search uses 0.3 fb−1 of data collected with the DO detector at the Fermilab Tevatron Collider. We set limits on the production cross section times the branching fraction σ ( p p ¯ → X ) × B ( X → Z γ ) that range from 0.4 to 3.5 pb at the 95% C.L. for X with invariant masses between 100 and 1000 GeV / c 2 , over a wide range of X decay widths.
Data-driven estimation of the invisible energy of cosmic ray showers with the Pierre Auger Observatory
The determination of the primary energy of extensive air showers using the fluorescence detection technique requires an estimation of the energy carried away by particles that do not deposit all their energy in the atmosphere. This estimation is typically made using Monte Carlo simulations and thus depends on the assumed primary particle mass and on model predictions for neutrino and muon production. In this work we present a new method to obtain the invisible energy from events detected by the Pierre Auger Observatory. The method uses measurements of the muon number at ground level, and it allows us to significantly reduce the systematic uncertainties related to the mass composition and th…
Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy
We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…
A combined search for the standard model Higgs boson at s=1.96 TeV
AbstractWe present new results of the search for WH→ℓνbb¯ production in pp¯ collisions at a center-of-mass energy of s=1.96 TeV, based on a dataset with integrated luminosity of 0.44 fb−1. We combine these new results with previously published searches by the D0 collaboration, for WH and ZH production analyzed in the E̸Tbb¯ final state, for ZH (→ℓ+ℓ−bb¯) production, for WH (→WWW) production, and for H (→WW) direct production. No signal-like excess is observed either in the WH analysis or in the combination of all D0 Higgs boson analyses. We set 95% C.L. (expected) upper limits on σ(pp¯→WH)×B(H→bb¯) ranging from 1.6 (2.2) pb to 1.9 (3.3) pb for Higgs boson masses between 105 and 145 GeV, to …
An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources
A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS …
Correlation of the highest-energy cosmic rays with nearby extragalactic objects.
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above ~ 6x10^{19} electron volts and the positions of active galactic nuclei (AGN) lying within ~ 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar…
Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV
We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10¹⁸ eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106⁺³⁵₋₂₁) g/cm²/decade below 1018.24 ± 0.05 eV and (24 ± 3) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.
Search for tt¯ resonances in the lepton plus jets final state in pp¯ collisions at s=1.96TeV
We present a search for a narrow-width heavy resonance decaying into top quark pairs X->ttbar in ppbar collisions at sqrt{s}=1.96TeV using approximately 0.9fb^-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. This analysis considers ttbar candidate events in the lepton plus jets channel with at least one identified b jet and uses the ttbar invariant mass distribution to search for evidence of resonant production. We find no evidence for a narrow resonance X decaying to ttbar. Therefore, we set upper limits on sigma*B(X->ttbar) for different hypothesized resonance masses using a Bayesian approach. For a Topcolor-assisted technicolor model, the existence of a leptop…
Model-independent measurement of the W-boson helicity in top-quark decays at D0.
Made available in DSpace on 2022-04-28T20:37:47Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-02-14 Science and Technology Facilities Council We present the first model-independent measurement of the helicity of W bosons produced in top quark decays, based on a 1fb-1 sample of candidate tt̄ events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron pp̄ Collider. We reconstruct the angle θ* between the momenta of the down-type fermion and the top quark in the W boson rest frame for each top quark decay. A fit of the resulting cos θ* distribution finds that the fraction of longitudinal W bosons f0=0.425±0.166(stat)±0.102(syst) and the f…
Direct measurement of the muonic content of extensive air showers between 2× 1017 and 2×1018 eV at the Pierre Auger Observatory
The hybrid design of the Pierre Auger Observatory allows for the measurement of the properties of extensive air showers initiated by ultra-high energy cosmic rays with unprecedented precision. By using an array of prototype underground muon detectors, we have performed the first direct measurement, by the Auger Collaboration, of the muon content of air showers between 2 × 10 17 and 2 × 10 18 eV. We have studied the energy evolution of the attenuation-corrected muon density, and compared it to predictions from air shower simulations. The observed densities are found to be larger than those predicted by models. We quantify this discrepancy by combining the measurements from the muon detector …
Search for a scalar or vector particle decaying into Zγ in pp¯ collisions at s=1.96 TeV
We present a search for a narrow scalar or vector resonance decaying into Z gamma with a subsequent Z boson decay into a pair of electrons or moons. The data for this search were collected with the D circle divide detecror at the Fermilab Tevatron p (p) over bar collider at a center of mass energy root s = 1.96 TeV. Using 1.1 (1.0) fb(-1) of data, we observe 49 (50) candidate events in the electron (muon) channel, in good agreement with the standard model prediction. From the combination of both channels, we derive 95% C.L. upper limits on the cross section times branching fraction (sigma x B) into Z gamma. These limits range from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 G…
A search for point sources of EeV photons
Measurements of air showersmade using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from −85º to +20º, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of −2, is 0.06 eV cm−2 s−1, and no celestial direction exceeds 0.25 eV …
Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…
Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory
Erratum: Phys. Rev. D 85, 029902(E) (2012) [http://dx.doi.org/10.1103/PhysRevD.85.029902]
Measurement of the average shape of longitudinal profiles of cosmic-ray air showers at the Pierre Auger Observatory
The profile of the longitudinal development of showers produced by ultra-high energy cosmic rays carries information related to the interaction properties of the primary particles with atmospheric nuclei. In this work, we present the first measurement of the average shower profile in traversed atmospheric depth at the Pierre Auger Observatory. The shapes of profiles are well reproduced by the Gaisser-Hillas parametrization within the range studied, for E>10 17.8 eV .A detailed analysis of the systematic uncertainties is performed using ten years of data and a full detector simulation. The average shape is quantified using two variables related to the width and asymmetry of the profile, and …
The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than $60^\circ$, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution t…
Experimental Discrimination between Charge2e/3Top Quark and Charge4e/3Exotic Quark Production Scenarios
We present the first experimental discrimination between the 2e/3 and 4e/3 top quark electric charge scenarios, using top quark pairs (ttbar) produced in ppbar collisions at sqrt{s}=1.96 TeV by the Fermilab Tevatron collider. We use 370 pb-1 of data collected by the D0 experiment and select events with at least one high transverse momentum electron or muon, high transverse energy imbalance, and four or more jets. We discriminate between b- and bbar-quark jets by using the charge and momenta of tracks within the jet cones. The data is consistent with the expected electric charge, |q|=2e/3. We exclude, at the 92% C.L., that the sample is solely due to the production of exotic quark pairs QQba…
Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\tau_{\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\tau_{\rm a}(3.5~{\rm km})\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\tau_{\rm a}(3.5~{\rm km})\sim 0.03$ -, and a sum…
Properties ofL=1B1andB2*Mesons
This Letter presents the first strong evidence for the resolution of the excited B mesons B-1 and B-2(*) as two separate states in fully reconstructed decays to B+(*())pi(-). The mass of B-1 is measured to be 5720.6 +/- 2.4 +/- 1.4 MeV/c(2) and the mass difference Delta M between B-2* and B-1 is 26.2 +/- 3.1 +/- 0: 9 MeV/c(2), giving the mass of the B-2* as 5746.8 +/- 2.4 +/- 1.7 MeV/c(2). The production rate for B-1 and B-2* mesons is determined to be a fraction (13.9 +/- 1.9 +/- 3.2)% of the production rate of the B+ meson.
Search for neutral MSSM Higgs bosons at LEP
The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. Thes…
Reconstruction of inclined air showers detected with the Pierre Auger Observatory
We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than $60^\circ$ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an…
Search for single production of scalar leptoquarks in pp¯ collisions decaying into muons and quarks with the D0 detector
We report on a search for second generation leptoquarks LQ_2 which decay into a muon plus quark in p\bar{p} collisions at a center-of-mass energy of sqrt{s} = 1.96 TeV in the D0 detector using an integrated luminosity of about 300 pb-1. No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction beta into a quark and a muon was determined for second generation scalar leptoquarks as a function of the leptoquark mass. This result has been combined with a previously published D0 search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark cou…
Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)
Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.
Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers
To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accura…
Search for W′ boson production in the W′→tb¯ decay channel
We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W, boson masses. We exclude masses between 200 and 610 GeV for a W' boson with standard-model-like couplings, between 200 and 630 GeV for a W, boson wi…
Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory
We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.