0000000000061985

AUTHOR

Julien Pernot

Si Donor Incorporation in GaN Nanowires

With increasing interest in GaN based devices, the control and evaluation of doping are becoming more and more important. We have studied the structural and electrical properties of a series of Si-doped GaN nanowires (NWs) grown by molecular beam epitaxy (MBE) with a typical dimension of 2-3 μm in length and 20-200 nm in radius. In particular, high resolution energy dispersive X-ray spectroscopy (EDX) has illustrated a higher Si incorporation in NWs than that in two-dimensional (2D) layers and Si segregation at the edge of the NW with the highest doping. Moreover, direct transport measurements on single NWs have shown a controlled doping with resistivity from 10(2) to 10(-3) Ω·cm, and a car…

research product

Mg and In Codoped p-type AlN Nanowires for pn Junction Realization.

Efficient, mercury-free deep ultraviolet (DUV) light-emitting diodes (LEDs) are becoming a crucial challenge for many applications such as water purification. For decades, the poor p-type doping and difficult current injection of Al-rich AlGaN-based DUV LEDs have limited their efficiency and therefore their use. We present here the significant increase in AlN p-doping thanks to Mg/In codoping, which leads to an order of magnitude higher Mg solubility limit in AlN nanowires (NWs). Optimal electrical activation of acceptor impurities has been further achieved by electron irradiation, resulting in tunnel conduction through the AlN NW p-n junction. The proposed theoretical scenario to account f…

research product

Direct assessment of p–n junctions in single GaN nanowires by Kelvin probe force microscopy

Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analysing the response of NW segments with p- and n-type doping under illumination. Our results show that th…

research product

Structural and Electrical Transport Properties of Si doped GaN nanowires

The control and assessment of doping in GaN nanostructures are crucial for the realization of GaN based nanodevices. In this study, we have investigated a series of Si-doped GaN nanowires (NWs) grown by molecular beam epitaxy (MBE) with a typical dimension of 2–3 µm in length, and 20–200 nm in radius. In particular, high resolution energy dispersive X-ray spectroscopy (EDX) has illustrated a higher Si incorporation in NWs than that in two-dimensional (2D) layers and Si segregation at the edge of the NW with the highest doping. Moreover, direct transport measurements on single NWs have revealed a controlled doping with resistivity from 2 × 10−2 to 10−3 Ω.cm for Si doped NWs. Field effect tra…

research product