0000000000061994

AUTHOR

Michael Wibral

0000-0001-8010-5862

Measuring spectrally-resolved information transfer.

Information transfer, measured by transfer entropy, is a key component of distributed computation. It is therefore important to understand the pattern of information transfer in order to unravel the distributed computational algorithms of a system. Since in many natural systems distributed computation is thought to rely on rhythmic processes a frequency resolved measure of information transfer is highly desirable. Here, we present a novel algorithm, and its efficient implementation, to identify separately frequencies sending and receiving information in a network. Our approach relies on the invertible maximum overlap discrete wavelet transform (MODWT) for the creation of surrogate data in t…

research product

Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping

In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate s…

research product

Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects, our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power, and beta-band connectivity was directed f…

research product

Cortical network mechanisms of response inhibition

SummaryBoth the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA) are crucial for successful response inhibition. However, the particular functional roles of those two regions have been controversially debated for more than a decade now. It is unclear whether the rIFG directly initiates stopping or serves an attentional function, whereas the stopping is triggered by the pre-SMA. The current multimodal MEG/fMRI study sought to clarify the role and temporal activation order of both regions in response inhibition using a selective stopping task. This task dissociates inhibitory from attentional processes. Our results reliably reveal a temporal precedence of rIF…

research product

Author response: Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

research product

Separable neural bases for subprocesses of recognition in working memory.

Working memory supports the recognition of objects in the environment. Memory models have postulated that recognition relies on 2 processes: assessing the degree of similarity between an external stimulus and memory representations and testing the resulting summed-similarity value against a critical level for recognition. Here, we varied the similarity between samples held in working memory and a probe to investigate these 2 processes with magnetoencephalography. Two separable components matched our expectations: First, from 280 ms after probe onset, clearly nonmatching probes differed from both similar nonmatches and matches over left frontal cortex. At 350--400 ms, these signals evolved i…

research product

Measuring spectrally-resolved information transfer for sender- and receiver-specific frequencies

AbstractInformation transfer, measured by transfer entropy, is a key component of distributed computation. It is therefore important to understand the pattern of information transfer in order to unravel the distributed computational algorithms of a system. Since in many natural systems distributed computation is thought to rely on rhythmic processes a frequency resolved measure of information transfer is highly desirable. Here, we present a novel algorithm, and its efficient implementation, to identify separately frequencies sending and receiving information in a network. Our approach relies on the invertible maximum overlap discrete wavelet transform (MODWT) for the creation of surrogate d…

research product