0000000000064596

AUTHOR

Sebastien Pierrat

Cytotoxicity of Metal and Semiconductor Nanoparticles Indicated by Cellular Micromotility

In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods…

research product

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, …

research product

Self-assembly of small gold colloids with functionalized gold nanorods.

We present a general strategy to stabilize gold nanorod suspensions with mono- and bifunctional polyethylene glycol (PEG) and to attach a controlled number of nanoparticles or biomolecules. Characterization by gel electrophoresis, transmission electron microscopy (TEM), and optical dark-field microscopy show the specific binding of functionalized nanorods to their target while avoiding nonspecific binding to substrates, matrices, and other particles. Such nanorods are well suited for self-assembly of nanostructures and single-molecule labeling.

research product

Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells

Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 ± 4) nm and rods with a size of (38 ± 7) nm × (17 ± 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to v…

research product

A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy.

Toxicological effects of nanoparticles are associated with their internalization into cells. Hence, there is a strong need for techniques revealing the interaction between particles and cells as well as quantifying the uptake at the same time. For that reason, herein optical dark-field microscopy is used in conjunction with transmission electron microscopy to investigate the uptake of gold nanoparticles into epithelial cells with respect to shape, stabilizing agent, and surface charge. The number of internalized particles is strongly dependent on the stabilizing agent, but not on the particle shape. A test of metabolic activity shows no direct correlation with the number of internalized par…

research product

Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape

We demonstrate the separation of gold and silver nanoparticles according to their size and shape by agarose gel electrophoresis after coating them with a charged polymer layer. The separation is monitored optically using the size- and shape-dependent plasmon resonance of noble metal particles and confirmed by transmission electron microscopy (TEM). Electrophoretic mobilities are quantitatively explained by a model based on the Henry formula, providing a theoretical framework for predicting gel mobilities of polymer coated nanoparticles.

research product