0000000000068777
AUTHOR
Stuart Hamilton Taylor
The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene
Cerium oxides have been prepared by nanocasting of a mesoporous siliceous KIT-6. Through this synthesis method a partially ordered mesoporous structure, as demonstrated by several characterization techniques (N2 adsorption, XRD and HRTEM) has been obtained. Accordingly, very high surface areas have been achieved (up to 163 m2/g), despite using high calcination temperatures (550 °C). We have demonstrated that the aging temperature of the siliceous template is of outstanding importance, as this parameter is directly responsible for both the pore size and the surface area of the catalysts. In addition, whilst a low preparation temperature (40 °C) makes the further removal of the silica templat…
The key role of nanocasting in gold-based Fe2 O3 nanocasted catalysts for oxygen activation at the metal-support interface
5 Tablas.- 10 Figuras.- This is the peer reviewed version of the following article: The key role of nanocasting in gold‐based Fe2O3 nanocasted catalysts for oxygen activation at the metal‐support interface, ChemCatChem 11: 1915-1927 (2019), which has been published in final form at http://dx.doi.org/10.1002/cctc.201900210. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane
Abstract A set of vanadium phosphorous oxide (VPO) catalysts, mainly consisting of (VO) 2 P 2 O 7 , VO(PO 3 ) 2 or VOPO 4 ·2H 2 O bulk crystalline phases, has been investigated for the oxidative dehydrogenation (ODH) of ethane to ethylene, a key potential reaction for a sustainable industrial and socioeconomic development. The catalytic performance on these VPO catalysts has been explained on the basis of the main crystalline phases and the corresponding surface features found by XPS and LEISS at 400 °C, i.e. within the temperature range used for ODH reaction. The catalysts based on (VO) 2 P 2 O 7 phase presented the highest catalytic activity and productivity to ethylene. Nevertheless, the…
Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion
Gold supported on nickel cerium oxide catalysts (Ni–Ce–O) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. High surface area Ni–Ce–O catalysts were synthesized using a very simple evaporation method, where cerium and nickel salts were evaporated in the presence of a mixture of methanol and oxalic acid. Gold catalysts were prepared following a deposition–precipitation method. A very efficient catalyst for the oxidation of propane, in terms of both activity and selectivity, was obtained. This high activity has been related to the high surface area of the catalyst (and therefore to the presence of more active sites ava…
The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane
Mixed copper manganese oxide catalysts (Hopcalite) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. Catalysts were prepared using coprecipitation with and without gold. Calcination temperature influenced the catalyst activity and those prepared at 300 °C were the most active. Characterization showed that the catalysts had a nanowire-type morphology, and for those containing gold it was present as metallic particles occluded within the nanowires. The incorporation of gold into the catalyst enhanced the activity for propane conversion, but the presence of gold did not noticeably enhance the light-off activity. Althou…
Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene
Mesoporous CeO2 modified by the addition of copper has shown high efficiency for the total oxidation of naphthalene. High activity and 100% selectivity to carbon dioxide throughout the whole range of temperatures studied were achieved for copper loadings of 3.6% and lower. The catalytic behaviour has been related to the concentration of surface oxygen defects. A clear correlation between the concentration of surface oxygen defects (determined by XPS and DRIFTS) and the catalytic performance has been identified. Catalytic activity increased as copper was incorporated into the ceria up to 3.6%. In this range of copper content the copper was incorporated into the cubic fluorite lattice of CeO2…
Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation
Abstract A set of catalysts comprised of gold on different CeO 2 supports has been prepared by a nanocasting route and characterized by several physicochemical techniques. These catalysts have been tested for CO oxidation and show outstanding catalytic activity. Higher calcination temperatures of the hard template, producing a poorly ordered silica template, have led to a higher amount of oxygen vacancies on the surface of CeO 2 . The presence of surface oxygen defects in the support combined with the deposition of Au nanoparticles ( ca. 3 nm) homogeneously dispersed on the CeO 2 support may explain the excellent behaviour for low temperature CO oxidation. Surprisingly, it has been observed…
Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane
Several niobium phosphate phases have been prepared, fully characterized and tested as catalysts for the selective oxidation of ethane to ethylene. Three distinct niobium phosphate catalysts were prepared, and each was comprised predominantly of a different bulk phase, namely Nb(2)P(4)O(15), NbOPO(4) and Nb(1.91)P(2.82)O(12). All of the niobium phosphate catalysts showed high selectivity towards ethylene, but the best catalyst was Nb(1.91)P(2.82)O(12), which was produced from the reduction of niobium oxide phosphate (NbOPO(4)) by hydrogen. It was particularly selective for ethylene, giving ca. 95% selectivity at 5% conversion, decreasing to ca. 90% at 15% conversion, and only produced low l…
The influence of cerium to urea preparation ratio of nanocrystalline ceria catalysts for the total oxidation of naphthalene
The influence of cerium salt/urea ratio on the activity of nanocrystalline ceria catalysts prepared by homogeneous precipitation with urea for the complete oxidation of naphthalene has been evaluated. Ceria catalysts were prepared from five different cerium salt/urea ratios (2:1, 1:1, 1:2, 1:3 and 1:4). Catalyst characterization (by BET, XRD and TPR) only revealed subtle differences in the characteristics of these catalysts with cerium salt to urea ratio. However, Raman and scanning electron microscopy (SEM) results indicated differences in the oxygen defect concentration (FWHM of Raman band) and morphology of the catalysts with variation of the preparation ratio. Catalysts prepared with 2:…
Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts
3 Tablae, 14 Figures.-- Supplementary material.-- © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Total oxidation of naphthalene using bulk manganese oxide catalysts
Several Mn2O3 catalysts have been synthesized using different preparation methods and tested for the total oxidation of naphthalene, a model polycyclic aromatic compound. The catalysts have been characterized by several physico-chemical techniques such as XRD, TPR, XPS, EDX and TEM. The surface area of the catalyst seems to be of paramount importance, since the mass normalized activity of catalysts increases as the surface area of the Mn2O3 catalysts increases. Consequently, a high surface area ordered mesoporous Mn2O3 catalyst, obtained through a nanocasting route using mesoporous KIT-6 silica as a hard template, was the most efficient catalyst for the deep oxidation of naphthalene. In add…
High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants
The doping of mesoporous ceria with copper significantly enhances activity for naphthalene total oxidation, the enhanced performance is controlled by the increased concentration of surface oxygen defects.
Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support
13 figures, 3 tables.-- Supplementary information available.-- © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route.
Gold deposited on a cobalt oxide with high surface area (138 m2 g−1), obtained through a nanocasting route using a siliceous KIT-6 mesoporous material as a hard template, has demonstrated high activity for the total oxidation of propane and toluene, and ambient temperature CO oxidation. The addition of gold promotes the activity when compared to a gold-free Co3O4 catalyst prepared using the same nanocasting technique. The enhanced catalytic activity when gold is present has been explained for the deep oxidation of propane and toluene in terms of the improved reducibility of cobalt oxide when gold is added, rather than to the intrinsic activity of metallic gold particles. The improved behavi…
TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts
Abstract A transient reactor study of the oxidation of propane to CO 2 on gold-free and gold-doped CoO x catalysts has been carried out. It has been demonstrated that the presence of gold markedly promotes the catalytic reactivity of cobalt oxide in the total oxidation of propane. Both catalysts oxidised propane directly to CO 2 via a Mars–Van Krevelen mechanism, and this was confirmed using isotopically labelled oxygen experiments. The increased activity of the gold catalyst is related to the faster reoxidation of the cobalt oxide when gold is present in the catalyst, since the reaction step in which the catalyst is reduced, due to propane oxidation, is similar for both catalysts. The fast…
Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts
Abstract Supported and unsupported nanocrystalline cobalt oxides have been shown to be extremely efficient catalysts for the total oxidation of propane. Total conversion with a high stability has been achieved at reaction temperatures as low as 250 °C. In the present work, a comparison between the catalytic performance of bulk and alumina-supported nanocrystalline cobalt oxide catalysts has been made. The influence of crystallite size, nature of the support (alpha, gamma and mesoporous alumina) and cobalt loading, has been probed. Unsupported cobalt oxide catalysts were more active than any supported cobalt oxide catalysts. The catalytic activity was mainly dependent on the crystallite size…
The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation
The increased activity of alumina-supported palladium catalysts promoted with vanadium oxide has been investigated. Three different vanadium promoted Pd/Al2O3 catalysts with the same composition but synthesized employing sequential and co-impregnation were tested for the total oxidation of propane. The order of impregnation was critical to produce high activity catalysts. Vanadium and palladium co-impregnation on the Al2O3 support led to the most active catalyst, whereas the step-wise impregnated catalysts show a catalytic performance similar to or slightly better than unpromoted palladium catalysts. The high activity of the co-impregnated catalysts is related to the particle size and oxida…
Structural characterization of Niobium Phosphate Catalysts used for the Oxidative Dehydrogenation of Ethane to Ethylene
Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.
High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO2 Nanodomains in Structure and Activity
Metal nanoparticles with precisely controlled size are highly attractive for heterogeneous catalysis. However, their poor thermal stability remains a major concern in their application at realistic operating conditions. This paper demonstrates the possibility of synthesizing gold nanoparticles with exceptional thermal stability. This has been achieved by using a simple conventional deposition–precipitation technique. The material employed as catalyst consists of gold supported on a TiO2-impregnated SiO2 bimodal mesoporous support. The resulting material shows gold nanoparticles with a narrow size distribution around 3.0 nm, homogeneously dispersed over the TiO2/SiO2 material. Most interesti…
Glycerol selective oxidation to lactic acid over AuPt nanoparticles; Enhancing reaction selectivity and understanding by support modification
2 Schemes, 3 Tables, 5 Figures.
Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes
9 figures, 2 tables.
Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane
Titania-supported palladium catalysts modified by tungsten have been tested for the total oxidation of propane. The addition of tungsten significantly enhanced the catalytic activity. Highly active catalysts were prepared containing a low loading of 0.5 wt.% palladium, and activity increased as the tungsten loading was increased up to 6 wt.%. Catalysts were characterised using a variety of techniques, including powder X-ray diffraction, laser Raman spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and aberration-corrected scanning transmission electron microscopy. Highly dispersed palladium nanoparticles were present on the catalyst with and without the additi…
Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation
Cerium/zirconium mixed oxides, with different Ce/Zr ratios, have been synthesised by a co-precipitation method using two different precipitating agents (sodium carbonate and urea) and tested for the total oxidation of naphthalene. Catalysts were characterized by N2 adsorption, XRD, Raman, TPR, XPS and DRIFTS. Ceria prepared by carbonate precipitation had low activity and this is likely to be related to the high concentration of residual surface carbonate that covers catalytic sites and inhibits reaction. For carbonate precipitation, increasing the Zr content to 1% resulted in a significant increase of activity, which is related to the decrease of surface carbonate. Increasing the Zr content…
Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol.
Abstract During the catalytic combustion of naphthalene, compounds other than CO 2 are often obtained. These products, as polymerized polycyclic aromatic hydrocarbons, oxygenated aromatic compounds and benzene derivate compounds, are usually more toxic than naphthalene. At the present work it is shown a nanocrystalline cerium oxide prepared by a combustion method employing a proper ethylene glycol concentration that exhibits very high activity in the decomposition of naphthalene in the presence of air and, most importantly, a selectivity value towards CO 2 of 100% for any range of conversions and/or temperatures used. In addition, it has been demonstrated that the amount of ethylene glycol …
Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon
Abstract Nano-crystalline ceria catalysts prepared by homogeneous precipitation with urea were tested for the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon (PAH). Systematic variation of preparation conditions, including calcination temperature, calcination time and aging time, resulted in differences in surface area, reducibility, morphology and crystallite size of the CeO 2 catalyst and hence differences in catalytic performance. A combination of high surface area, small crystallite size and high oxygen defect concentration was found to favor the efficiency of the ceria catalysts for the total oxidation of naphthalene. Optimum preparation conditions for this stud…
Insights into the production of upgraded biofuels using Mg-loaded mesoporous ZSM-5 zeolites
9 figures, 6 tables.-- Supplementary information available.-- https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html
Deep oxidation of propane using palladium–titania catalysts modified by niobium
Abstract Pd/TiO 2 catalysts modified by niobium have been prepared and tested for the complete oxidation of propane. The catalysts have been characterised by BET, XRD, laser Raman spectroscopy, XPS, DRS and TPR. The incorporation of niobium into Pd/TiO 2 catalysts resulted in a marked increase in the catalytic activity compared to the Nb-free Pd/TiO 2 catalysts, and the activity increased as the niobium and/or palladium loading increased. The addition of Nb significantly modified the nature of the palladium and niobium species. There was a marked increase in the oxygen mobility after niobium addition. This could not only promote the presence of palladium species in a totally oxidized state …
Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation
Differently prepared vanadium promoted Pt/alumina catalysts have been prepared, characterized and tested for propane total oxidation. V-promoted Pt/Al2O3 catalysts have shown remarkably higher catalytic activity than V-free Pt/Al2O3 catalyst. Among V-promoted Pt catalysts that prepared by coimpregnation gave the highest alkane conversions in the whole range of reaction temperatures studied. Factors such as Pt particle size or the oxidation state of platinum do not seem to be the responsible for the enhanced performance. Modification of the redox properties of the catalyst (i.e. high reducibility of vanadium species) likely provoked by the close contact between platinum particles and vanadiu…