0000000000082864
AUTHOR
Dror Fixler
Coherent Microscopy for 3-D Movement Monitoring and Super-Resolved Imaging
In this chapter we present three types of microscopy-related configurations while the first one is used for 3-D movement monitoring of the inspected samples, the second one is used for super-resolved 3-D imaging, and the last one presents an overview digital holographic microscopy applications. The first configuration is based on temporal tracking of secondary reflected speckles when imaged by properly defocused optics. We validate the proposed scheme by using it to monitor 3-D spontaneous contraction of rat’s cardiac muscle cells while allowing nanometric tracking accuracy without interferometric recording. The second configuration includes projection of temporally varying speckle patterns…
Synthetic aperture superresolution by speckle pattern projection.
We propose a method for increasing the resolution of an aperture limited optical system by illuminating the input with a speckle pattern. The high resolution of the projected speckle pattern demodulates the high frequencies of the sample and permits its passage through the system aperture. A decoding provides the superresolved image. The speckle pattern can be generated in a simple manner in contrast with other structured light superresolution methods. The method is demonstrated in microscopy test images.
A microscope configuration for nanometer 3-D movement monitoring accuracy.
In this paper we present a new microscopy configuration based upon temporal tracking of a secondary reflected speckle by imaging the speckle through properly defocused optics. The configuration is used to monitor three-dimensional (3-D) spontaneous contraction of rat cardiac muscle cells while achieving nanometer tracking accuracy at a rate of 30 frames per second (fps) without using interferometric recording. Estimation of the change in the optical path of accuracy of 50 nm in the transverse direction and of 200 nm in the axial direction was achieved.
Speckle based configuration for simultaneousin vitroinspection of mechanical contractions of cardiac myocyte cells
In this manuscript we propose optical lensless configuration for a remote non-contact measuring of mechanical contractions of vast number of cardiac myocytes. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the generated secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (a…
Speckle random coding for 2D super resolving fluorescent microscopic imaging.
In this manuscript we present a novel super resolving approach based upon projection of a random speckle pattern onto samples observed through a microscope. The projection of the speckle pattern is created by coherent illumination of the inspected pattern through a diffuser. Due to local interference of the coherent wave front with itself, a random speckle pattern is superimposed on the sample. This speckle pattern can be scanned over the object. A super-resolved image can be extracted from a temporal sequence of images by appropriate digital processing of the image stream. The resulting resolution is significantly higher than the diffraction limitation of the microscope objective. The new …
One-dimensional wavelength multiplexed microscope without objective lens
A new approach aimed to achieve microscopic imaging without objective lenses and based on wavelength multiplexing of the spatial object information is presented. The proposed method is used to develop, construct and experimentally validate a new type of optical microscope having no objective lens and no numerical reconstruction algorithms to allow imaging process. In order to extract the collected spatial information we use a spectrometer as part of our microscope system. Preliminary results are presented while considering two different types of one-dimensional (1-D) objects.
Pattern projection for subpixel resolved imaging in microscopy.
In this paper, we present a new approach providing super resolved images exceeding the geometrical limitation given by the detector pixel size of the imaging camera. The concept involves the projection of periodic patterns on top of the sample, which are then investigated under a microscope. Combining spatial scanning together with proper digital post-processing algorithm yields the improved geometrical resolution enhancement. This new method is especially interesting for microscopic imaging when the resolution of the detector is lower than the resolution due to diffraction.
Speckle-based configuration for simultaneous in vitro inspection of mechanical contractions of cardiac myocyte cells.
An optical lensless configuration for a remote noncontact measuring of mechanical contractions of a vast number of cardiac myocytes is proposed. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (∼1000 cells) and to extra…