0000000000084742
AUTHOR
François Courvoisier
Stealth dicing with Bessel beams and beyond
In the context of laser cutting of transparent materials, we investigate glass cleaving with Bessel beams and report that a modification of the beam with 3 main lobes drastically enhances cleavability and reduces defects.
Ultrafast laser-induced micro-explosion: material modification tool
Femtosecond Bessel pulses with a needle-like intensity distribution were focused inside sapphire crystal to create voids and the shock-wave affected volume which is by more than two orders of magnitude larger as compared with that made by the Gaussian pulse.
Crack formation and cleaving of sapphire with ultrafast bessel beams
Sapphire is a transparent crystalline dielectric of high hardness with many important applications, specifically to the next-generation touchscreens and to the LED growth, as substrates. However, sapphire cutting by ablative techniques is rather slow therefore fast material separation techniques are needed. Material separation by “stealth dicing” has been recently developed, it is based on material cleaving along a plane weakened by multiple ultrafast laser illuminations. This allows usually generating taper-free cutting and avoids material loss. However, the illuminated plane needs small spacing between the shot to shot (typically a few μm) and long damages inside the bulk. This requires l…
Single-shot ultrafast laser processing of high-aspect-ratio nanochannels using elliptical Bessel beams
Ultrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and translating a high-intensity laser beam within a material to induce a well-defined internal stress plane. This then enables material separation without debris generation. Here, we use a non-diffracting beam engineered to have a transverse elliptical spatial profile to generate high aspect ratio elliptical channels in glass of dimension 350 nm x 710 nm, and subsequent cleaved surface uniformity at the sub-micron level.
High speed cleaving of crystals with ultrafast Bessel beams
International audience; We develop a novel concept for ultra-high speed cleaving of crystalline materials with femtosecond lasers. Using Bessel beams in single shot, fracture planes can be induced nearly all along the Bessel zone in sapphire. For the first time, we show that only for a pulse duration below 650 fs, a single fracture can be induced in sapphire, while above this duration, cracks appear in all crystallographic orientations. We determine the influential parameters which are polarization direction, crystallographic axes and scanning direction. This is applied to cleave sapphire with a spacing as high as 25 μm between laser impacts.
Stealth dicing with ultrafast Bessel beams with engineered transverse profiles
International audience; We investigate high-speed glass cleaving with ultrafast laser beams with engineered transverse intensity profile. We achieve accuracy of ~ 1 µm at 25 mm/s and drastically enhance cleavability compared to standard Bessel beams.
Four-wave mixing control in the filamentation of ultrafast Bessel beams via longitudinal intensity-shaping
International audience; Bessel beams exploit conical energy flow to yield near-uniform intensity along a line focus which has been shown to be extremely attractive for laser processing in dielectrics. At high power, however, the nonlinear Kerr effect is known to induce significant oscillations of the on-axis intensity which is deleterious for machining applications. Here, we show through theory and numerical modelling how this problem can be understood and overcome by appropriate spatial phase shaping of the input profile. Our results also solve the longstanding problem related to the nonlinear Bessel beam dynamics seen at an air-dielectric interface.
Micron-precision in cleaving glass using ultrafast bessel beams with engineered transverse beam shapes
International audience; Ultrafast lasers in association to beam shaping have shown to be excellent candidates for transparent material processing. Non-diffractive solutions such as Bessel beams allows for precise energy deposition since they are robust to undesired non-linear effects and as they do not distort along the propagation. This offers important opportunities in laser-assisted cleaving, i.e. mechanical medium separation after single-pass laser illumination. Here we break the Bessel beam cylindrical symmetry using a novel anisotropic and non-diffractive solutions to investigate both lateral intensity contributions on material response and induced processing effect for non-cylindrica…
Control of nonlinear instabilities in Bessel beams using shaped longitudinal intensity profiles
International audience; We show that tailored longitudinal intensity shaping of a non-diffracting Bessel beam can strongly reduce four wave mixing induced oscillations and stabilize nonlinear propagation at ablation-level intensities
In-situ diagnostic of ultrashort probes based on Kerr-index transient Bragg grating
Pump-probe experiments are essential tools to investigate ultrafast dynamics of laser-matter interaction. We are particularly interested in the dynamics of transparent dielectrics under high numerical aperture focusing. Two main challenges arise for the weak probe pulse. First, we need a precise knowledge of the probe delay with respect to the pump pulse. Second, dispersion compensation of the ultrashort probe pulse generally requires a prism compressor, which can generate angular dispersion, and therefore incorrect interpretation of the pumpprobe measurements.
Caustic Interpretation of the Abruptly Autofocusing Vortex beams
We propose an effective scheme to interpret the abruptly autofocusing vortex beam. In our scheme, a set of analytical formulae are deduced to well predict not only the global caustic, before and after the focal plane, but also the focusing properties of the abruptly autofocusing vortex beam, including the axial position as well as the diameter of focal ring. Our analytical results are in excellent agreement with both numerical simulation and experimental results. Besides, we apply our analytical technique to the fine manipulation of the focusing properties with a scaling factor. This set of methods would be beneficial to a broad range of applications such as particle trapping and micromachi…
Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale
International audience; We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.
Scaling the abruptly autofocusing beams in the direct-space
International audience; We propose a simple technique to scale the abruptly autofocusing beams in the direct space by introducing a scaling factor in the phase. Analytical formulas are deduced based on optical caustics, explicitly revealing how the scaling factor controls location, peak intensity, and size of the focal spot. We demonstrate that the multiplication of a scaling factor on the phase is equivalent to the axial-scaling transformation under the paraxial approximation. Further numerical and experimental results confirm theoretical predictions. In addition, amplitude modulation using phase-only holograms is used to maintain the peak intensity level of the focal spots.