Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen
Ru films were grown by atomic layer deposition in the temperature range of 275―350°C using (ethylcyclopentadienyl)(pyrrolyl)ruthenium and air or oxygen as precursors on HF-etched Si, SiO 2 , ZrO 2 , and TiN substrates. Conformal growth was examined on three-dimensional silicon substrates with 20:1 aspect ratio. ZrO 2 promoted the nucleation of Ru most efficiently compared to other substrates, but the films roughened quickly on ZrO 2 with increasing film thickness. The minimum number of cycles required to form continuous and conductive metal layers could be decreased by increasing the length of the oxygen pulse. In order to obtain well-conducting Ru films growth to thicknesses of at least 8―…
Review article: recommended reading list of early publications on atomic layer deposition - outcome of the "virtual Project on the History of ALD"
Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual proj…