0000000000100059
AUTHOR
O Botner
Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube
[EN] Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the out¿ow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the ANTARES and IceCub…
B* production in Z decays
The decay B*→Bγ has been observed with the DELPHI detector at LEP, where the B* meson is produced in Z boson decays. The combination of inclusively reconstructed B mesons with well-measured converted photons yields a measurement of the flavour-averaged B*-B mass difference of 45.5±0.3 (stat.) ±0.8 (syst.) MeV/c2. 95% confidence level upper limits at 6 MeV/c2 are placed on both the isospin (i.e. B+-B0) and the Bs-Bud splitting of the mass difference. The production ratio of B* to B mesons in Z decays is measured to be 0.72±0.03 (stat.) ±0.06 (syst.). Limits on the production cross-section of other hypothetical excited B hadron states decaying radiatively are established. The differential B* …
Investigation of the splitting of quark and gluon jets
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resol…
Measurements of the Lineshape of the $Z^{0}$ and Determination of Electroweak Parameters from its Hadronic and Leptonic Decays
Abstract: During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450000 Z0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z0 resonance. Model independent fits to the cross sections and leptonic forward-backward asymmetries yield the following Z0 parameters: the mass and total width M(Z) = 91.187 +/- 0.009 GeV, GAMMA(Z) = 2.486 +/- 0.012 GeV, the hadronic and leptonic partial widths GAMMA(had) = 1.725 +/- 0.012GeV, GAMMA(l) = 83.01 +/- 0.52 MeV, the invisible width GAMMA(inv) = 51…
Lateral distribution of muons in IceCube cosmic ray events
In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (>2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the ra…
Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube
[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …
Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector
We report on results of an all-sky search for high-energy neutrino events interacting within the IceCube neutrino detector conducted between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to approximately 30 TeV. Twenty-six additional events were observed, substantially more than expected from atmospheric backgrounds. Combined, both searches reject a purely atmospheric origin for the twenty-eight events at the $4\sigma$ level. These twenty-eight events, which include the highest energy neutrinos ever observed, have flavors, directions, and energies inconsistent with those expected…
DETERMINATION OF ALPHA(S) FOR B-QUARKS AT THE Z(0) RESONANCE
The strong coupling constant for b quarks has been determined, and its flavour independence, as predicted by QCD, investigated. The analysis involved events with lepton candidates selected from approximately 356 000 hadronic decays of the Z0, collected by the DELPHI detector at LEP in 1990 and 199 1. A method based on a direct comparison of the three-jet fraction in a b enriched sample, selected by requiring leptons with large momenta and transverse momenta, to that of the entire hadronic sample, illustrated the significant effect of the b quark mass on the multi-jet cross section, and verified the flavour independence of the strong coupling constant to an accuracy of +/- 6%. A second proce…
Photon events with missing energy at root s=183 to 189 GeV
The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and compos…
Measurement of inclusive pi(0) production in hadronic Z(0) decays
An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \…
DETERMINATION OF ALPHA-S FROM THE SCALING VIOLATION IN THE FRAGMENTATION FUNCTIONS IN E+E- ANNIHILATION
A determination of the hadronic fragmentation functions of the Z0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 less-than-or-equal-to Q2 less-than-or-equal-to 8312 GeV2 and x (= p(h)/E(beam)) > 0.08. A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: alpha(s)(M(Z)) = 0.118 +/- 0.005. The corresponding QCD scale for five quark flavours is: LAMBDA(MS)(5)BAR = 230 +/- 60 MeV.
W pair production cross-section and W branching fractions in $e^{+}e^{-}$ interactions at 189 GeV
The cross-section for the process e+e- -> W+W- has been measured with the data sample collected by DELPHI at an average centre-of-mass energy of 189 GeV and corresponding to an integrated luminosity of 155 pb^{-1}. Based on the 2392 events selected as WW candidates, the cross-section for the doubly resonant process e+e- -> W+W- has been measured to be 15.83 +- 0.38 (stat) +- 0.20 (syst) pb. The branching fractions of the W decay were also measured and found to be in good agreement with the Standard Model expectation. From these a value of the CKM mixing matrix element |V_{cs}| = 1.001 +- 0.040 (stat) +- 0.020 (syst) was derived.
The Scale Dependence of the Hadron Multiplicity in Quark and Gluon Jets and a Precise Determination of $C_{A}/C_{F}$
\frac{C_A}{C_F} = 2.246 \pm 0.062~(stat.) \pm 0.080~(syst.) \pm 0.095~(theo.) Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.0…
Update of the search for supersymmetric particles in scenarios with Gravitino LSP and Sleptons NLSP
An update of the search for sleptons, neutralinos and charginos in the context of scenarios where the lightest supersymmetric particle is the gravitino and the next-to-lightest supersymmetric particle is a slepton, is presented, together with the update of the search for heavy stable charged particles in light gravitino scenarios and Minimal Supersymmetric Standard Models. Data collected in 1999 with the DELPHI detector at centre-of-mass energies around 192, 196, 200 and 202 GeV were analysed. No evidence for the production of these supersymmetric particles was found. Hence, new mass limits were derived at 95% confidence level.
Measurement of Event Shape and Inclusive Distributions at $\sqrt{s} =$ 130 and 136 GeV
Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine $\alpha_s$ from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: % %\alpha_s…
Search for the Standard Model Higgs boson at LEP in the year 2000
Searches for the Standard Model Higgs boson have been performed in the data collected by the DELPHI experiment at LEP in the year 2000 at centre-of-mass energies between 200 and 209 GeV corresponding to a total integrated luminosity of 224 pb^{-1}. No evidence for a Higgs signal is observed in the kinematically accessible mass range, and a 95% CL lower mass limit of 114.3 GeV/c^2 is set, to be compared with an expected median limit of 113.5 GeV/c^2 for these data.
The search for Muon neutrinos from northern hemisphere gamma-ray bursts with AMANDA
We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the Northern Hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. Based on our observations of zero neutrinos during and immediately prior to the GRBs in the dataset, we set the most stringent upper limit on muon neutrino emission correlated with gamma-ray bursts. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalizatio…
Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
This paper presents the results of different searches for correlations between very high-energy neutrino candidates detected by IceCube and the highest-energy cosmic rays measured by the Pierre Auger Observatory and the Telescope Array. We first consider samples of cascade neutrino events and of high-energy neutrino-induced muon tracks, which provided evidence for a neutrino flux of astrophysical origin, and study their cross-correlation with the ultrahigh-energy cosmic ray (UHECR) samples as a function of angular separation. We also study their possible directional correlations using a likelihood method stacking the neutrino arrival directions and adopting different assumptions on the size…
Measurement of the charged particle multiplicity of weakly decaying B hadrons
From the Z decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying B hadrons was measured to be: 4.97 +/- 0.03 +/- 0.06 excluding the K-o and Lambda decay products. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Measurement of the ZZ cross-section in e(+)e(-) interactions at 183-189 GeV
Measurements of on-shell ZZ production are described, using data collected by DELPHI in 1997 and 1998, at centre-of-mass energies sqrt(s) = 182.6 GeV and 188.6 GeV respectively. Results obtained in each of the final states q qbar q qbar, mu+mu- q qbar, e+e- q qbar, nu nubar q qbar, l+l-l+l-, and nu nubar l+l- are presented. The measured cross-sections for on-shell ZZ production via the tree-level doubly-resonant graphs (NC02) are: sigma_{NC02}(182.6 GeV) = 0.38 +- 0.18 (stat) +- 0.04 (syst) pb, sigma_{NC02}(188.6 GeV) = 0.60 +- 0.13 (stat) +- 0.07 (syst) pb. They are consistent with the Standard Model expectations of 0.25 pb and 0.65 pb at each energy.
Multiplicity fluctuations in one- And two-dimensional angular intervals compared with analytic QCD calculations
Multiplicity fluctuations in rings around the jet axis and in off-axis cones have been measured by the DELPHI collaboration in $e^+e^-$ annihilations into hadrons at LEP energies. The measurements are compared with analytical perturbative QCD calculations for the corresponding multiparton system, using the concept of Local Parton Hadron Duality. Some qualitative features are confirmed by the data but substantial quantitative deviations are observed.
Measurement of the semileptonic b branching fractions and average b mixing parameter in Z decays
The semileptonic branching fractions for primary and cascade b decays BR(b -> lepton-), BR(b -> c -> lepton+) and BR(b -> cbar -> lepton-) were measured in hadronic Z decays collected by the DELPHI experiment at LEP. The sample was enriched in b decays using the lifetime information and various techniques were used to separate leptons from direct or cascade b decays. By fitting the momentum spectra of di-leptons in opposite jets, the average b mixing parameter chi-bar was also extracted. The following results have been obtained: BR(b -> lepton-) = (10.70 +/- 0.08 (stat) +/- 0.21 (syst)_{+0.44}^{-0.30}(model))% BR(b -> c -> lepton+) = (7.98 +/- 0.22 (stat) +/- 0.21 (s…
Measurement and Interpretation of Fermion-Pair Production at LEP Energies of 183 and 189 GeV
An analysis of the data collected in 1997 and 1998 with the DELPHI detector at e+e- collision energies close to 183 and 189 GeV was performed in order to extract the hadronic and leptonic fermion-pair cross-sections, as well as the leptonic forward-backward asymmetries and angular distributions. The data are used to put limit on contact interactions between fermions, the exchange of R-parity violating SUSY sneutrinos, Z' bosons and the existence of gravity in extra dimensions.