0000000000105945

AUTHOR

Renjin Jiang

showing 9 related works from this author

Cheeger-harmonic functions in metric measure spaces revisited

2014

Abstract Let ( X , d , μ ) be a complete metric measure space, with μ a locally doubling measure, that supports a local weak L 2 -Poincare inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on ( X , d , μ ) . Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Pure mathematicsSemigroupta111Poincaré inequalityCurvatureLipschitz continuitySpace (mathematics)Measure (mathematics)symbols.namesakeHarmonic functionMetric (mathematics)symbolsAnalysisMathematicsJournal of Functional Analysis
researchProduct

Korn inequality on irregular domains

2013

Abstract In this paper, we study the weighted Korn inequality on some irregular domains, e.g., s-John domains and domains satisfying quasihyperbolic boundary conditions. Examples regarding sharpness of the Korn inequality on these domains are presented. Moreover, we show that Korn inequalities imply certain Poincare inequality.

Pure mathematicsInequalityKorn inequalityquasihyperbolic metricApplied Mathematicsmedia_common.quotation_subjectta111Mathematics::Analysis of PDEss-John domainPoincaré inequalitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Classical Analysis and ODEsPoincaré inequalityClassical Analysis and ODEs (math.CA)FOS: Mathematicssymbolsdivergence equationBoundary value problem26D10 35A23AnalysisAnalysis of PDEs (math.AP)Mathematicsmedia_commonJournal of Mathematical Analysis and Applications
researchProduct

Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions

2014

Abstract Let ( X , d , μ ) be a complete, locally doubling metric measure space that supports a local weak L 2 -Poincare inequality. We show that optimal gradient estimates for Cheeger-harmonic functions imply local isoperimetric inequalities.

Applied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysista111Poincaré inequalityIsoperimetric dimensionSpace (mathematics)Lipschitz continuity01 natural sciencesMeasure (mathematics)symbols.namesakeHarmonic function0103 physical sciencesMetric (mathematics)symbolsMathematics::Metric Geometry010307 mathematical physics0101 mathematicsIsoperimetric inequalityMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Solvability of the divergence equation implies John via Poincaré inequality

2014

Abstract Let Ω ⊂ R 2 be a bounded simply connected domain. We show that, for a fixed (every) p ∈ ( 1 , ∞ ) , the divergence equation div v = f is solvable in W 0 1 , p ( Ω ) 2 for every f ∈ L 0 p ( Ω ) , if and only if Ω is a John domain, if and only if the weighted Poincare inequality ∫ Ω | u ( x ) − u Ω | q d x ≤ C ∫ Ω | ∇ u ( x ) | q  dist  ( x , ∂ Ω ) q d x holds for some (every) q ∈ [ 1 , ∞ ) . This gives a positive answer to a question raised by Russ (2013) in the case of bounded simply connected domains. In higher dimensions similar results are proved under some additional assumptions on the domain in question.

symbols.namesakePure mathematicsApplied MathematicsBounded functionDomain (ring theory)Simply connected spaceta111symbolsPoincaré inequalityDivergence (statistics)AnalysisMathematicsNonlinear Analysis, Theory, Methods and Applications
researchProduct

Gradient estimates for heat kernels and harmonic functions

2020

Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…

Mathematics - Differential GeometryPure mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)Sobolev inequalitydifferentiaaligeometriaRiesz transformsymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryLi-Yau estimates0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsRiesz transformosittaisdifferentiaaliyhtälötSemigroupDirichlet form010102 general mathematicsMetric Geometry (math.MG)harmoninen analyysiheat kernelsDifferential Geometry (math.DG)Harmonic functionMathematics - Classical Analysis and ODEssymbolspotentiaaliteoria010307 mathematical physicsIsoperimetric inequalityharmonic functionsAnalysisAnalysis of PDEs (math.AP)Journal of Functional Analysis
researchProduct

Isoperimetric inequality from the poisson equation via curvature

2012

In this paper, we establish an isoperimetric inequality in a metric measure space via the Poisson equation. Let (X,d,μ) be a complete, pathwise connected metric space with locally Ahlfors Q-regular measure, where Q > 1, that supports a local L2-Poincare inequality. We show that, for the Poisson equation Δu = g, if the local L∞-norm of the gradient Du can be bounded by the Lorentz norm LQ,1 of g, then we obtain an isoperimetric inequality and a Sobolev inequality in (X,d,μ) with optimal exponents. By assuming a suitable curvature lower bound, we establish such optimal bounds on . © 2011 Wiley Periodicals, Inc.

Hölder's inequalityApplied MathematicsGeneral Mathematicsta111Mathematical analysisPoincaré inequalityIsoperimetric dimensionMinkowski inequalitySobolev inequalityMetric spacesymbols.namesakesymbolsLog sum inequalityIsoperimetric inequalityMathematicsCommunications on Pure and Applied Mathematics
researchProduct

Gradient Estimate for Solutions to Poisson Equations in Metric Measure Spaces

2011

Let $(X,d)$ be a complete, pathwise connected metric measure space with locally Ahlfors $Q$-regular measure $\mu$, where $Q>1$. Suppose that $(X,d,\mu)$ supports a (local) $(1,2)$-Poincar\'e inequality and a suitable curvature lower bound. For the Poisson equation $\Delta u=f$ on $(X,d,\mu)$, Moser-Trudinger and Sobolev inequalities are established for the gradient of $u$. The local H\"older continuity with optimal exponent of solutions is obtained.

Sobolev inequalityMathematics::Analysis of PDEsHölder conditionPoincaré inequality31C25 31C45 35B33 35B65Poisson equationSpace (mathematics)01 natural sciencesMeasure (mathematics)Sobolev inequalitysymbols.namesakeMathematics - Analysis of PDEs0103 physical sciencesFOS: Mathematics0101 mathematicsMathematicsMoser–Trudinger inequalityCurvatureRegular measureta111010102 general mathematicsMathematical analysisPoincaré inequalityMetric (mathematics)Riesz potentialsymbols010307 mathematical physicsPoisson's equationAnalysisAnalysis of PDEs (math.AP)
researchProduct

Cheeger-harmonic functions in metric measure spaces revisited

2013

Let $(X,d,\mu)$ be a complete metric measure space, with $\mu$ a locally doubling measure, that supports a local weak $L^2$-Poincar\'e inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on $(X,d,\mu)$. Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)Mathematics - Metric GeometryFOS: MathematicsMetric Geometry (math.MG)Analysis of PDEs (math.AP)
researchProduct

New Orlicz-Hardy Spaces Associated with Divergence Form Elliptic Operators

2009

Let $L$ be the divergence form elliptic operator with complex bounded measurable coefficients, $\omega$ the positive concave function on $(0,\infty)$ of strictly critical lower type $p_\oz\in (0, 1]$ and $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$ for $t\in (0,\infty).$ In this paper, the authors study the Orlicz-Hardy space $H_{\omega,L}({\mathbb R}^n)$ and its dual space $\mathrm{BMO}_{\rho,L^\ast}({\mathbb R}^n)$, where $L^\ast$ denotes the adjoint operator of $L$ in $L^2({\mathbb R}^n)$. Several characterizations of $H_{\omega,L}({\mathbb R}^n)$, including the molecular characterization, the Lusin-area function characterization and the maximal function characterization, are established. The …

Mathematics - Functional AnalysisMathematics::Functional AnalysisMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Classical Analysis and ODEs42B35 (Primary) 42B30 46E30 (Secondary)Functional Analysis (math.FA)
researchProduct