0000000000113945

AUTHOR

Jeroen Van Rie

Biochemistry and genetics of insect resistance toBacillus thuringiensisinsecticidal crystal proteins

Current knowledge of biochemical mechanisms of insect resistance to Bacillus thuringiensis is reviewed. Available information on resistance inheritance and on patterns of cross-resistance is included. Modification of the binding sites for B. thuringiensis insecticidal crystal proteins has been found in different populations of three insect species. This resistance mechanism seems to be inherited as a single recessive or partially recessive major gene, and the resistance levels reached are high. Altered proteolytic processing of B. thuringiensis crystal proteins has been suggested to be involved in one case of resistance. From the available data it seems that binding site modification is the…

research product

Binding Site Alteration Is Responsible for Field-Isolated Resistance to Bacillus thuringiensis Cry2A Insecticidal Proteins in Two Helicoverpa Species

Background Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conf…

research product

Different binding sites for Bacillus thuringiensis Cry1Ba and Cry9Ca proteins in the European corn borer, Ostrinia nubilalis (Hübner).

Binding studies using (125)I-Cry9Ca and biotinylated-Cry1Ba proteins showed the occurrence of independent binding sites for these proteins in Ostrinia nubilalis. Our results, along with previously available binding data, indicate that combinations of Cry1A or Cry1Fa proteins with Cry1Ba and/or Cry9Ca could be a good strategy for the resistance management of O. nubilalis.

research product

Vip3C, a novel class of vegetative insectidal proteins from Bacillus thuringiensis

Three vip3 genes were identified in two Bacillus thuringiensis Spanish collections. Sequence analysis revealed a novel Vip3 protein class (Vip3C). Preliminary bioassays of larvae from 10 different lepidopteran species indicated that Vip3Ca3 caused more than 70% mortality in four species after 10 days at 4 οg/cm 2. © 2012, American Society for Microbiology.

research product

Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests.

Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af proteins from Bacillus thuringiensis were tested for their toxicity against Spodoptera frugiperda and Agrotis ipsilon. Vip3Ad was non-toxic to the two species. Vip3Ae and Vip3Af were significantly more toxic than Vip3Aa against S. frugiperda, both as protoxins and as toxins. Against A. ipsilon, Vip3Ae protoxin was more toxic than Vip3Aa and Vip3Af protoxins. Purification by metal-chelate affinity chromatography significantly affected Vip3Ae toxicity against the two insect species.

research product

Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species

ABSTRACT Cry1Fa insecticidal protein was successfully radiolabeled with 125 I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis , Spodoptera frugiperda , Spodoptera exigua , Helicoverpa armigera , Heliothis virescens , and Plutella xylostella . Homologous competition assays were performed to obtain equilibrium binding parameters ( K d [dissociation constant] and R t [concentration of binding sites]) for these six insect species.

research product

Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda

First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the c…

research product

Insecticidal Genetically Modified Crops and Insect Resistance Management (IRM)

Economically important crops, such as maize and cotton, have been transformed with genes encoding insecticidal proteins from Bacillus thuringiensis (Bt) to confer them protection against the most important insect pests. Of the 114 million hectares globally planted with GM crops in 2007, over one third are insect-resistant Bt crops, and the area keeps increasing every year. The potential for insects to evolve resistance to GM insecticidal plants is considered to be one of the main threats to this technology, since resistance to Bt sprayable products has been demonstrated. Insect resistance management plans for this new class of pesticides are encouraged and became mandatory in the USA. Of th…

research product

Specific binding  of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species

ABSTRACT For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with 125 I-labeled Cry2Ab. Saturation assays showed that Cry2Ab binds in a specific and saturable manner to brush border membrane vesicles (BBMVs) of Helicoverpa armigera . Homologous-competition assays with 125 I-Cry2Ab demonstrated that this toxi…

research product

Biochemistry and genetics of insect resistance to Bacillus thuringiensis.

▪ Abstract  Bacillus thuringiensis (Bt) is a valuable source of insecticidal proteins for use in conventional sprayable formulations and in transgenic crops, and it is the most promising alternative to synthetic insecticides. However, evolution of resistance in insect populations is a serious threat to this technology. So far, only one insect species has evolved significant levels of resistance in the field, but laboratory selection experiments have shown the high potential of other species to evolve resistance against Bt. We have reviewed the current knowledge on the biochemical mechanisms and genetics of resistance to Bt products and insecticidal crystal proteins. The understanding of th…

research product

Insect resistance to Bacillus thuringiensis insecticidal crystal proteins

Several insect species have developed resistance to insecticidal crystal proteins from Bacillus thuringiensis, either through laboratory selection, or under field conditions. In this chapter we review the current knowledge on the biochemical and genetic mechanisms of resistance to B. thuringiensis. This knowledge will be important in the design of appropriate tactics to manage the development of resistance in insect populations.

research product