0000000000123737
AUTHOR
Ernest Hamel
Synthesis and biological evaluation of 2-(3',4',5'-trimethoxybenzoyl)-3-N,N-dimethylamino benzo[b]furan derivatives as inhibitors of tubulin polymerization
Molecules that target microtubules have an important role in the treatment of cancer. A new class of inhibitors of tubulin polymerization based on the 2-(3,4,5-trimethoxybenzoyl)-2-dimethylamino-benzo[b]furan molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. The most promising compound in this series was 2-(3,4,5-trimethoxybenzoyl)-3-dimethylamino-6-methoxy-benzo[b]furan, which inhibits cancer cell growth at nanomolar concentrations and interacts strongly with tubulin by binding to the colchicine site.
Synthesis and Biological Evaluation of 1-Methyl-2-(3',4',5'-trimethoxybenzoyl)-3-aminoindoles as a New Class of Antimitotic Agents and Tubulin Inhibitors
The 2-(3,4,5-trimethoxybenzoyl)-2-aminoindole nucleus was used as the fundamental structure for the synthesis of compounds modified with respect to positions C-4 to C-7 with different moieties (chloro, methyl, or methoxy). Additional structural variations concerned the indole nitrogen, which was alkylated with small alkyl groups such as methyl or ethyl. We have identified 1-methyl-2-(3,4,5-trimethoxybenzoyl)-3-amino-7-methoxyindole as a new highly potent antiproliferative agent that targets tubulin at the colchicine binding site and leads to apoptotic cell death.
Synthesis and Biological Evaluation of 2-Amino-3-(3’,4’,5’-Trimethoxybenzoyl)-6-Substituted-4,5,6,7-Tetrahydrothieno[2,3-c]pyridine Derivatives as Antimitotic Agents and Inhibitors of Tubulin Polymerization
Microtubules are among the most successful targets of compounds potentially useful for cancer therapy. A new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)-4,5,6,7-tetrahydrothieno[b]pyridine molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. The most promising compound in this series was 2-amino-3-(3,4,5-trimethoxybenzoyl)-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[b]pyridine, which inhibits cancer cell growth with IC(50)-values ranging from 25 to 90 nM against a panel of four cancer cell lines, and interacts strongly with tubulin by binding to the co…
Evaluation of [1,2]oxazolo[5,4-e]isoindoles in lymphoma cells
Anti-tubulin agents are important chemotherapeutics. Combretastatin A-4 (CA-4) emerged as lead compound for the design of new tubulin-binding agents. Its analogues 4,5-diarylisoxazoles, containing the [1,2]oxazole ring as linker of two aryl moieties, displayed higher antitubulin activity than CA-4. [1,2]oxazolo[5,4-e]isoindoles also gave excellent results reducing cell growth of NCI-60 tumor cell lines and diffuse malignant peritoneal mesothelioma (DMPM) cells. Selected derivatives showed in vivo antitumor activity at well-tolerated doses in a DMPM xenograft model. [1,2]oxazolo[5,4-e]isoindoles were screened in four lymphoma histotypes: germinal center B-cell and activated diffuse large B c…
Synthesis and biological evaluation of 2-(3 ',4 ',5 '-trimethoxybenzoyl)-3-amino 5-aryl thiophenes as a new class of tubulin inhibitors
2-(3',4',5'-Trimethoxybenzoyl)-3-amino-5-aryl/heteroaryl thiophene derivatives were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. SARs were elucidated with various substitutions on the aryl moiety 5-position of the thienyl ring. Substituents at the para-position of the 5-phenyl group showed antiproliferative activity in the order of F=CH(3) > OCH(3)=Br=NO(2) > CF(3)=I > OEt. Several of these compounds led to arrest of HL-60 cells in the G2/M phase of the cell cycle and induction of apoptosis.
Synthesis, antiproliferative activity and possible mechanism of action of novel 2-acetamidobenzamides bearing the 2-phenoxy functionality.
Several new 2-(2-phenoxyacetamido)benzamides 17a-v, 21 and 22 were synthesized by stirring in pyridine the acid chlorides 16a-e and the appropriate5-R-4-R1-2-aminobenzamide 15a-e and initially evaluated in vitro for antiproliferative activity against the K562 (human chronic myelogenous leukemia) cell line. Some of synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell line panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). The most active compounds caused an arrest of K562 cells in the G0-G1 phase of cell cycle and induction of apoptos…
Design, synthesis, and biological evaluation of thiophene analogues of chalcones.
Chalcones are characterized by possessing an enone moiety between two aromatic rings. A series of chalcone-like agents, in which the double bond of the enone system is embedded within a thiophene ring, were synthesized and evaluated for antiproliferative activity and inhibition of tubulin assembly and colchicine binding to tubulin. The replacement of the double bond with a thiophene maintains antiproliferative activity and therefore must not significantly alter the relative conformation of the two aryl rings. The synthesized compounds were found to inhibit the growth of several cancer cell lines at nanomolar to low micromolar concentrations. In general, all compounds having significant anti…
Pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles, a New Class of Antimitotic Agents Active against Multiple Malignant Cell Types
A new class of pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles was synthesized for the treatment of hyperproliferative pathologies, including neoplasms. The new compounds were screened in the 60 human cancer cell lines of the NCI drug screen and showed potent activity with GI50 values reaching the nanomolar level, with mean graph midpoints of 0.08-0.41 μM. All compounds were further tested on six lymphoma cell lines, and eight showed potent growth inhibitory effects with IC50 values lower than 500 nM. Mechanism of action studies showed the ability of the new [1,2]oxazoles to arrest cells in the G2/M phase in a concentration dependent manner and to induce apoptosis through the mitochondrial…
New complex polycyclic compounds: Synthesis, antiproliferative activity and mechanism of action
Abstract Polycyclic or O-glycoconiugate polycyclic compounds 1a-g were previously tested for their in vitro antiproliferative activity. In this series of compounds, activity increases as log P decreases. Specifically, compounds 1d and 1g showed lower log P values together with the best antiproliferative profiles. With the aim of extending our understanding of the structure–activity relationship (SAR) of this class of compounds, we prepared new polycyclic derivatives 2a-c, which bear on each of the two phenyl rings hydrophilic substituents (OH, SO2NH2 or NHCOCH3). These substituents are able to form hydrogen bonds and to decrease the partition coefficient value as compared with compound 1d. …
Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation
Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3’,4’,5’-trimethoxybenzoyl)-3-iodoacetamido-6-methoxy benzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3’,4’,5’-trimethoxybenzoyl moi…
Abstract C097: Pyrrolo[2′,3′:3,4]cyclohepta[1,2-d][1,2]oxazoles: A new class of antimitotic agents
Abstract Tubulin-binding molecules constitute an important class of antineoplastic agents, with broad activity in both solid and hematologic malignancies. Oxazoles represent the core structure of many drug candidates with multiple targets, providing an attractive scaffold in medicinal chemistry. Diaryl[1,2]oxazoles have emerged as potent analogues of the antitubulin compound combretastatin A-4 (CA-4). Naphtylcombretastin and its derivatives incorporating the isoxazole moiety displayed potent cytotoxic effects and inhibition of tubulin polymerization. In particular, 5-(naphthalen-2-yl)-4-(TMP)-1,2-oxazole and 4-(naphthalen-2-yl)-5-(TMP)-1,2-oxazole showed the same inhibitory potency as napht…
Substituted 2-(3',4',5'-trimethoxybenzoyl)-benzo[b]thiophene derivatives as potent tubulin polymerization inhibitors.
The central role of microtubules in cell division and mitosis makes them a particularly important target for anticancer agents. On our early publication, we found that a series of 2-(3',4',5'-trimethoxybenzoyl)-3-aminobenzo[b]thiophenes exhibited strong antiproliferative activity in the submicromolar range and significantly arrested cells in the G2-M phase of the cell cycle and induced apoptosis. In order to investigate the importance of the amino group at the 3-position of the benzo[b]thiophene skeleton, the corresponding 3-unsubstituted and methyl derivatives were prepared. A novel series of inhibitors of tubulin polymerization, based on the 2-(3,4,5-trimethoxybenzoyl)-benzo[b]thiophene m…
Synthesis, antiproliferative activity, and mechanism of action of a series of 2-{[2E]-3-phenylprop-2-enoylamino}benzamides
Several new 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides 12a–s and 17t–v were synthesized by stirring in pyridine the (E)-3-(2-R1-3-R2-4-R3-phenyl)acrylic acid chlorides 11c–k and 11t–v with the appropriate anthranilamide derivatives 10a–c or the 5-iodoanthranilic acid 13. Some of the synthesized compounds were evaluated for their in vitro antiproliferative activity against the full NCI tumor cell line panel derived from nine clinically isolated cancer types (leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast). COMPARE analysis, effects on tubulin polymerization in cells and with purified tubulin, and effects on cell cycle distribution for 17t, the mo…
Insight on [1,3]thiazolo[4,5-e]isoindoles as tubulin polymerization inhibitors
A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.
Synthesis and biological evaluation of 2- and 3-aminobenzo[b]thiophene derivatives as antimitotic agents and inhibitors of tubulin polymerization.
Two new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)benzo[b]thiophene molecular skeleton and its 3-amino positional isomer were synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. Although many more 3-amino derivatives have been synthesized so far, the most promising compound in this series was 2-amino-6-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]thiophene, which inhibits cancer cell growth at subnanomolar concentrations and interacts strongly with tubulin by binding to the colchicine site.
Design, synthesis and structure-activity relationship of 2-(3',4',5'-trimethoxybenzoyl)-benzo[b]furan derivatives as a novel class of inhibitors of tubulin polymerization.
The biological importance of microtubules in mitosis and cell division makes them an interesting target for the development of anticancer agents. Small molecules such as benzo[b]furans are attractive as inhibitors of tubulin polymerization. Thus, a new class of inhibitors of tubulin polymerization based on the 2-(3′,4′,5′-trimethoxybenzoyl)-benzo[b]furan molecular skeleton, with electron-donating (Me, OMe or OH) or electron-withdrawing (F, Cl and Br) substituents on the benzene ring, was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization and cell cycle effects. Adding a methyl group at the C-3 position resulted in increased activity. The most prom…
Heterocyclic and Phenyl Double-Bond-Locked Combretastatin Analogues Possessing Potent Apoptosis-inducing activity in HL60 and in MDR Cell lines
Two new series of combretastatin (CA-4) analogues have been prepared. The alkenyl motif of CA-4 was replaced either by a five-membered heterocyclic (isoxazoline or isoxazole) or by a six-membered ring (pyridine or benzene). The new compounds have been evaluated for their effects on tubulin assembly and for cytotoxic and apoptotic activities. Five compounds (18b, 20a, 21a, 34b, and 35b) demonstrated an attractive profile of cytotoxicity (IC501 microM) and apoptosis-inducing activity but poor antitubulin activity. The isoxazoline derivatives 18b, 20a, and 21a, demonstrated potent apoptotic activity different from that of natural CA-4. Their ability to block most cells in the G2 phase suggests…
2-Cinnamamido, 2-(3-phenylpropiolamido), and 2-(3-phenylpropanamido)benzamides: synthesis, antiproliferative activity, and mechanism of action
Abstract Several new benzamides 4a–q were synthesized by stirring in pyridine the acid chlorides 3a–q with the appropriate anthranilamide derivatives 2a–g. Some of the synthesized compounds were evaluated for their in vitro antiproliferative activity against a panel of 5 human cell lines (K562 human chronic myelogenous leukemia cells, MCF-7 breast cancer cells, HTC-116 and HT26 colon cancer cells and NCI H460 non-small cell lung cancer cells).
Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives
Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, a new series of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-5-(hetero)aryl ethynyl thiophene derivatives was prepared by the Sonogashira coupling reaction of the corresponding 5-bromothiophenes with several (hetero)aryl acetylenes. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 2- and 3-thiophenyl acetylene derivatives were the most powerful compounds, both of which exerted cytostatic effects at submicromolar conc…