0000000000131633
AUTHOR
Sean Lourette
Quantitative measurements of non-covalent interactions with diamond based magnetic imaging
We present a technique employing dielectrophoretic (DEP) manipulation of surface immobilized complexes integrated with a magnetic imaging platform based on nitrogen-vacancy (NV) centers in diamond for the quantitative measurements of non-covalent interactions. The interdigitated microelectrodes closely spaced to the functionalized surface of the diamond plate provide a wide range of applied DEP forces for noninvasive manipulation of various molecular interactions, while the NV layer under the surface reports the unbinding dynamics. Given that biological samples do not present significant magnetic background and do not screen magnetic fields, our approach has many advantages over the fluores…
Dynamics of a Ferromagnetic Particle Levitated Over a Superconductor
Under conditions where the angular momentum of a ferromagnetic particle is dominated by intrinsic spin, applied torque is predicted to cause gyroscopic precession of the particle. If the particle is sufficiently isolated from the environment, a measurement of spin precession can potentially yield sensitivity to torque beyond the standard quantum limit. Levitation of a micron-scale ferromagnetic particle above a superconductor is a possible method of near frictionless suspension enabling observation of ferromagnetic particle precession and ultrasensitive torque measurements. We experimentally investigate the dynamics of a micron-scale ferromagnetic particle levitated above a superconducting …
Optical quenching and recovery of photoconductivity in single-crystal diamond
We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. This work was supported by AFOSR and the DARPA QuASAR program, by NSF Grant No. ECCS-1202258, and by DFG through the DIP program (FO 703/2-1).
Noncovalent force spectroscopy using wide-field optical and diamond-based magnetic imaging
A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen-vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.
Demonstration of diamond nuclear spin gyroscope
Description