High-Yield of Memory Elements from Carbon Nanotube Field-Effect Transistors with Atomic Layer Deposited Gate Dielectric
Carbon nanotube field-effect transistors (CNT FETs) have been proposed as possible building blocks for future nano-electronics. But a challenge with CNT FETs is that they appear to randomly display varying amounts of hysteresis in their transfer characteristics. The hysteresis is often attributed to charge trapping in the dielectric layer between the nanotube and the gate. This study includes 94 CNT FET samples, providing an unprecedented basis for statistics on the hysteresis seen in five different CNT-gate configurations. We find that the memory effect can be controlled by carefully designing the gate dielectric in nm-thin layers. By using atomic layer depositions (ALD) of HfO$_{2}$ and T…
Femtosecond four-wave-mixing spectroscopy of suspended individual semiconducting single-walled carbon nanotubes.
Femtosecond four-wave-mixing (FWM) experiments of individual suspended semiconducting single-walled carbon nanotubes (SWCNTs) are presented. The chiral indices of the tubes were determined by electron diffraction as (28,14) and (24,14) having diameters of 2.90 and 2.61 nm, respectively. The diameter and semiconducting character of the tubes were additionally confirmed by resonance Raman measurements. The FWM signal showed electronic response from the SWCNTs. The results demonstrate that ultrafast dynamics of individual SWCNTs can be studied by FWM spectroscopies.
Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes
Abstract In this work, we demonstrate flexible solution processed light emitting electrochemical cells (LECs) which use single-walled carbon nanotubes (SWCNTs) films as the substrate. The SWCNTs were synthesized by an integrated aerosol method and dry-transferred on the plastic substrates at room temperature. The addition of a screen printed poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) film onto the nanostructured electrode further homogenizes the surface and enlarges the work function, enhancing the hole injection into the active layer. By using an efficient phosphorescent ionic transition metal complex (iTMC) as the active material, efficacies up to 9…
Fabrication of carbon nanotube-based field-effect transistors for studies of their memory effects
Carbon nanotube‐based field‐effect transistors (CNTFETs) have been fabricated using nanometer thin dielectric material as the gate insulator film. The demonstrated fabrication technique is highly suitable for preparing devices with low contact resistances between the electrodes and the carbon nanotube, down to 14 kΩ. Electronic transport measurements of the fabricated devices have been conducted on more than 70 FETs. Hysteretic behavior in the transfer characteristics of some CNTFETs was observed.
Second-harmonic Generation Microscopy of Carbon Nanotubes
We image an individual single-walled carbon nanotube (SWNT) by second-harmonic generation (SHG) and transmission electron microscopy and propose that SHG microscopy could be used to probe the handedness of chiral SWNTs.
Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube
We show that optical second-harmonic generation (SHG) can be observed from individual single-walled carbon nanotubes (SWCNTs) and, furthermore, allows imaging of individual tubes. Detailed analysis of our results suggests that the structural noncentrosymmetry, as required for SHG, arises from the non-zero chiral angle of the SWCNT. SHG thus has potential as a fast, non-destructive, and simple method for imaging of individual nanomolecules and for probing their chiral properties. Even more, it opens the possibility to optically determine the handedness of individual SWCNTs.
Electronic transport measurements and Raman spectroscopy on carbon nanotube devices
An individual single wall carbon nanotube (SWCNT) device has been fabricated and measured using both low temperature transport and Raman measurements. With these mutually independent methods we can study the correlation between the techniques on semiconducting or metallic behavior of the tube. Furthermore, we study the structure of the nanotube by probing Raman measurements at different spots along the tube axis.