0000000000160748

AUTHOR

Dana Westmeier

showing 7 related works from this author

Corrigendum to “Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved …

2020

chemistry.chemical_classificationbiologyChemistryBiomoleculeBiophysicsNanoparticleBioengineeringbiology.organism_classificationBiomaterialsCorona (optical phenomenon)Mechanics of MaterialsCeramics and CompositesBiophysicsBacteriaBiomaterials
researchProduct

Tuning the surface of nanoparticles: Impact of poly(2-ethyl-2-oxazoline) on protein adsorption in serum and cellular uptake

2016

Item does not contain fulltext Due to the adsorption of biomolecules, the control of the biodistribution of nanoparticles is still one of the major challenges of nanomedicine. Poly(2-ethyl-2-oxazoline) (PEtOx) for surface modification of nanoparticles is applied and both protein adsorption and cellular uptake of PEtOxylated nanoparticles versus nanoparticles coated with poly(ethylene glycol) (PEG) and non-coated positively and negatively charged nanoparticles are compared. Therefore, fluorescent poly(organosiloxane) nanoparticles of 15 nm radius are synthesized, which are used as a scaffold for surface modification in a grafting onto approach. With multi-angle dynamic light scattering, asym…

SerumTime FactorsPolymers and PlasticsSurface PropertiesNanoparticleBioengineeringProtein Corona02 engineering and technologyChemical Fractionation010402 general chemistry01 natural sciencesCell LineBiomaterialschemistry.chemical_compoundAdsorptionDynamic light scatteringMaterials ChemistryPolyaminesOrganic chemistryHumanspoly(2-ethyl-2-oxazoline)Particle SizeElectrophoresis Agar Gelpoly(ethylene glycol)RhodaminesProteinscellular uptake021001 nanoscience & nanotechnologyprotein adsorptionDynamic Light ScatteringEndocytosis0104 chemical scienceschemistryChemical engineeringSurface modificationNanomedicineInstitut für ChemienanoparticlesAdsorption0210 nano-technologyEthylene glycolNanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19]BiotechnologyProtein adsorption
researchProduct

Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication

2020

Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen

Antifungal AgentsSurface PropertiesBiomedical EngineeringMedizinNanoparticleNanotechnology02 engineering and technology010501 environmental sciencesToxicologyModels Biological01 natural sciencesDrug Resistance FungalAnimalsHumansEcosystem0105 earth and related environmental scienceschemistry.chemical_classificationMicrobial ViabilityBiomoleculeSpores FungalSilicon Dioxide021001 nanoscience & nanotechnologychemistryNanotoxicologyNanoparticlesNanomedicineAdsorptionBotrytis0210 nano-technologyBiologie
researchProduct

Resistance to Nano-Based Antifungals Is Mediated by Biomolecule Coronas.

2018

Fungal infections are a growing global health and agricultural threat, and current chemical antifungals may induce various side-effects. Thus, nanoparticles are investigated as potential novel antifungals. We report that nanoparticles' antifungal activity strongly depends on their binding to fungal spores, focusing on the clinically important fungal pathogen Aspergillus fumigatus as well as common plant pathogens, such as Botrytis cinerea. We show that nanoparticle-spore complex formation was enhanced by the small nanoparticle size rather than the material, shape or charge, and could not be prevented by steric surface modifications. Fungal resistance to metal-based nanoparticles, such as Zn…

Materials scienceAntifungal AgentsMedizinChemieNanoparticleMetal Nanoparticles02 engineering and technologyMoths030226 pharmacology & pharmacyAspergillus fumigatus03 medical and health sciencesMice0302 clinical medicinePulmonary surfactantIn vivoDrug Resistance FungalAnimalsHumansGeneral Materials ScienceBotrytis cinereaPlant Diseaseschemistry.chemical_classificationbiologyBiomoleculeAspergillus fumigatusfungi021001 nanoscience & nanotechnologybiology.organism_classificationGalleria mellonellaDisease Models AnimalchemistryBiophysicsNanomedicineProtein CoronaBotrytisPulmonary Aspergillosis0210 nano-technologyACS applied materialsinterfaces
researchProduct

Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics

2018

Abstract Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus , Klebsiella pneumoniae or Enterococcus faecalis . Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentia…

ChemieMedizinBiophysicsBioengineeringMicrobial Sensitivity Tests02 engineering and technologymedicine.disease_causeEnterococcus faecalisMicrobiologyBiomaterials03 medical and health sciencesAntibiotic resistanceListeria monocytogenesDrug Resistance Multiple BacterialEscherichia colimedicine030304 developmental biologychemistry.chemical_classification0303 health sciencesMicrobial ViabilitybiologyBiomolecule021001 nanoscience & nanotechnologybiology.organism_classificationAnti-Bacterial AgentschemistryMechanics of MaterialsStaphylococcus aureusCeramics and CompositesNanoparticlesNanomedicineAdsorption0210 nano-technologyAntibacterial activityBacteriaBiomaterials
researchProduct

Nanoparticle decoration impacts airborne fungal pathobiology

2018

Airborne fungal pathogens, predominantly Aspergillus fumigatus, can cause severe respiratory tract diseases. Here we show that in environments, fungal spores can already be decorated with nanoparticles. Using representative controlled nanoparticle models, we demonstrate that various nanoparticles, but not microparticles, rapidly and stably associate with spores, without specific functionalization. Nanoparticle-spore complex formation was enhanced by small nanoparticle size rather than by material, charge, or "stealth" modifications and was concentration-dependently reduced by the formation of environmental or physiological biomolecule coronas. Assembly of nanoparticle-spore surface hybrid s…

0301 basic medicineTHP-1 CellsComplex formationMedizinNanoparticleMicrobiologyAspergillus fumigatusMice03 medical and health sciencesmedicineAnimalsHumansLungMultidisciplinaryLungbiologyChemistryAspergillus fumigatusfungiSpores FungalBiological Sciencesbiology.organism_classificationSpore030104 developmental biologymedicine.anatomical_structureA549 CellsCell toxicityCytokinesNanoparticlesNanomedicineProtein CoronaPulmonary AspergillosisRespiratory tractProceedings of the National Academy of Sciences
researchProduct

Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars

2017

tar-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerizat…

Hydrodynamic radiusPolymers and PlasticsPolymersBioengineeringBiodegradable Plastics02 engineering and technologyDegree of polymerization010402 general chemistry01 natural sciencesRing-opening polymerizationBiomaterialsDrug Delivery SystemsDynamic light scatteringNucleophilePolymer chemistryMaterials ChemistryCopolymerHumansAmino Acidschemistry.chemical_classificationPolymer021001 nanoscience & nanotechnologyGlutathione0104 chemical sciencesAmino acidHEK293 CellschemistryNanoparticlesPeptides0210 nano-technologyHeLa CellsBiotechnologyMacromolecular Bioscience
researchProduct