0000000000172880
AUTHOR
Polina L. Perelman
Retrotransposon mapping in spider monkey genomes of the family Atelidae (Platyrrhini, Primates) shows a high level of LINE-1 amplification
To investigate the distribution of LINE-1 repeat sequences, a LINE-1 probe was Fluorescence In Situ Hybridized (FISH) on the chromosomes of Ateles geoffroyi and Ateles fusciceps (Atelidae); a LINE-1 probe was also mapped on Cebuella pygmaea (Cebidae) and used as an outgroup for phylogenetic comparison. Ateles spider monkeys have a highly rearranged genome and are an ideal model for testing whether LINE-1 is involved in genome evolution. The LINE-1 probe has been mapped in the two Atelidae species for the first time, revealing a high accumulation of LINE-1 sequences along chromosomal arms, including telomeres, and a scarcity of LINE-1 signals at centromere positions. LINE-1 mapping in C. pyg…
Massive LINE-1 retrotransposon enrichment in tamarins of the Cebidae family (Platyrrhini, Primates) and its significance for genome evolution
To study heterochromatin distribution differences among tamarins, we applied LINE-1 probes using fluorescence in situ hybridization onto chromosomes of Saguinus mystax, Leontocebus fuscicollis, and Leontopithecus rosalia with the aim to investigate possible evolutionary implications. LINE-1 repeats were shown to be involved in genome architecture and in the occurrence of chromosomal rearrangements in many vertebrates. We found bright LINE-1 probe signals at centromeric or pericentromeric areas, GC rich, on almost all chromosomes in three tamarin species. We also found non-centromeric signals along chromosome arms. In a phylogenetic perspective, we analyzed the pattern of LINE-1 distribution…
Repetitive sequence distribution on Saguinus, Leontocebus and Leontopithecus tamarins (Platyrrhine, Primates) by mapping telomeric (TTAGGG) motifs and rDNA loci
Simple Summary Telomeric and rDNA sequence distribution on tamarins (New world monkeys, Primates) was analysed through molecular cytogenetics by fluorescence in situ hybridization. The mapping of Telomeric and rDNA probes on chromosomes was performed in order to clarify their localization and role in genome evolution. We found rDNA loci on the same homologs 19–22 on the analysed species with a different position in one of them named Leontopithecus rosalia, presumably as result of inversions. Other rDNA signals could be present on chromosome 16 and 17. On the last species, we found the classic telomeric sequence with exceptions while on the other species analysed, we found very amplified tel…
Mapping Retrotransposon LINE-1 Sequences into Two Cebidae Species and Homo sapiens Genomes and a Short Review on Primates
This work focuses on the distribution of LINE-1 (a Long Interspersed Nuclear Element) in primates and its role during evolution and as a constituent of the architecture of primate genomes. To pinpoint the LINE-1 repeat distribution and its role among primates, LINE-1 probes were mapped onto chromosomes of Homo sapiens (Hominidae, Catarrhini), Sapajus apella, and Cebus capucinus (Cebidae, Platyrrhini) using fluorescence in situ hybridisation (FISH). The choice of platyrrhine species are due to the fact they are taxa characterised by a high level of rearrangements; for this reason, they could be a useful model for the study of LINE-1 and chromosome evolution. LINE-1 accumulation was found in …
Chromosome painting of the pygmy tree shrew shows that no derived cytogenetic traits link primates and scandentia.
We hybridized human chromosome paints on metaphases of the pygmy tree shrew (<i>Tupaia minor</i>, Scandentia). The lack of the ancestral mammalian 4/8 association in both Primates and Scandentia was long considered a cytogenetic landmark that phylogenetically linked these mammalian orders. However, our results show that the association 4/8 is present in <i>Tupaia </i>along with not previously reported associations for 1/18 and 7/10. Altogether there are 11 syntenic associations of human chromosome segments in the pygmy tree shrew karyotype: 1/18, 2/21, 3/21, 4/8, 7/10, 7/16, 11/20, 12/22 (twice), 14/15 and 16/19. Our data remove any cytogenetic evidence that Scandent…
Evolution of the human chromosome 13 synteny: Evolutionary rearrangements, plasticity, human disease genes and cancer breakpoints
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype