0000000000173313

AUTHOR

S. Mueller

showing 25 related works from this author

Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory

2010

We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstronomyAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumFluxFOS: Physical sciencesCosmic rayAstrophysicsElectronSURFACE DETECTORUPPER LIMITENERGIAPHOTON FRACTION01 natural sciencesSpectral lineAugerNuclear physicscosmic raysObservatorySHOWERS0103 physical sciencesHigh-Energy Cosmic Ray010306 general physicsCosmic raysCiencias ExactasPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Spectral densityFísicaPierre Auger ObservatoryCosmic rayELECTRONS3. Good healthPierre Auger Observatory; Cosmic rays; Energy spectrumSIMULATIONExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaARRAYFísica nuclearEnergy spectrumAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Volatile dilution during magma injections and implications for volcano explosivity

2016

Magma reservoirs underneath volcanoes grow through episodic emplacement of magma batches. These pulsed magma injections can substantially alter the physical state of the resident magma by changing its temperature, pressure, composition, and volatile content. Here we examine plagioclase phenocrysts in pumice from the 2014 Plinian eruption of Kelud (Indonesia) that record the progressive capture of small melt inclusions within concentric growth zones during crystallization inside a magma reservoir. High-spatial-resolution Raman spectroscopic measurements reveal the concentration of dissolved H2O within the melt inclusions, and provide insights into melt-volatile behavior at the single crystal…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | GeowissenschaftenAsiaFar East010504 meteorology & atmospheric sciencesinclusionspyroclasticsMineralogyVolcanic explosivity indexengineering.material010502 geochemistry & geophysicsAnorthite01 natural sciencespumicePumiceddc:550PlagioclaseFluid inclusionsPetrology0105 earth and related environmental sciencesMelt inclusionsGeologyGeokemimagmasGeochemistryfluid inclusionsIndonesiaigneous rocksMagmaengineeringPhenocrystvolcanic rocksJavaGeology
researchProduct

Outgassing: Influence on speed of magma fragmentation

2013

[1] Predicting explosive eruptions remains an outstanding challenge. Knowledge of the controlling parameters and their relative importance is crucial to deepen our understanding of conduit flow dynamics and accurately model the processes involved. This experimental study sheds light on one important parameter—outgassing—and evaluates its influence on magma fragmentation behavior. We perform fragmentation experiments based on the shock tube theory at room temperature on natural pyroclastic material with a connected porosity ranging from 15% to 78%. For each sample series, we determine the initial pressure (P) required to initiate magma fragmentation (fragmentation threshold, Pth). Furthermor…

Explosive eruption010504 meteorology & atmospheric sciencesPyroclastic rock010502 geochemistry & geophysics01 natural sciencesOutgassingGeophysicsElectrical conduitFragmentation (mass spectrometry)13. Climate actionSpace and Planetary ScienceGeochemistry and PetrologyPumiceEarth and Planetary Sciences (miscellaneous)Geotechnical engineeringScoriaShock tubePetrologyGeology0105 earth and related environmental sciencesJournal of Geophysical Research: Solid Earth
researchProduct

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

The Influence of Crystal Size Distributions on the Rheology of Magmas: New Insights From Analog Experiments

2017

This study examines the influence of particle size distributions on the rheology of particle suspensions by using analogue experiments with spherical glass beads in silicone oil as magma equivalent. The analyses of 274 individual particle-bearing suspensions of varying modality (uni-, bi- tri- and tetramodality), as well as of polymodal suspensions with specific defined skewness and variance, are the first data set of its kind and provide important insights in the relationship between the solid particles of a suspension and its rheological behaviour. Since the relationship between the rheology of particle bearing suspensions and its maximum packing fraction ϕm is well established by several…

010504 meteorology & atmospheric sciencesDispersityMineralogyThermodynamics010502 geochemistry & geophysicsAtomic packing factor01 natural sciencesViscosityGeophysicsRheologyGeochemistry and PetrologyParticle-size distributionParticleParticle sizeSuspension (vehicle)Geology0105 earth and related environmental sciencesGeochemistry, Geophysics, Geosystems
researchProduct

Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory

2009

Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming ντ may interact in the Earth's crust and produce a τ lepton by means of charged-current interactions. The τ lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by τ decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is de…

ACTIVE GALACTIC NUCLEIASTROPHYSICS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsActive galactic nucleusPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayPROPAGATIONAstrophysics7. Clean energy01 natural sciencesLeptonSpectral lineSettore FIS/04 - Fisica Nucleare e SubnucleareAugerSEARCHTau neutrino0103 physical sciencesTau neutrinoOSCILLATIONS010306 general physicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSPierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaultrahigh energy cosmic rays ; tau neutrinos ; Pierre Auger ObservatoryDiffuse fluxPierre Auger ObservatoryPERFORMANCECOSMIC-RAYScosmic radiation13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonPhysical Review D
researchProduct

Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

2011

We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direc- tion and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cos- mic rays. We describe the largest multiplets found an…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Field (physics)Astronomyultra-high energy cosmic rays; Pierre Auger Observatory; arrival directionsFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesCosmic RayAugerPosition (vector)0103 physical sciencesFIELDPierre auger observatory010303 astronomy & astrophysicsUltra-high energy cosmic rayDETECTORCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsArrival directions010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsIsotropyFísicaAstronomy and AstrophysicsASTROFÍSICAUltra-high energy cosmic raysMagnetic fieldExperimental High Energy PhysicsData analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSArrival directionUltra-High Energy Cosmic Ray
researchProduct

Measurement of the Proton-Air Cross Section ats=57  TeVwith the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 +/- 22(stat)(-36)(+28)(syst)] mb is found.

Pierre Auger ObservatoryPhysicsProton010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and Astronomy01 natural scienceslaw.inventionAugerNuclear physicsCross section (physics)law0103 physical sciencesHigh Energy Physics::ExperimentFermilabNuclear Experiment010306 general physicsNucleonColliderPhysical Review Letters
researchProduct

Unravelling textural heterogeneity in obsidian:shear-induced outgassing in the Rocche Rosse flow

2016

Obsidian flow emplacement is a complex and understudied aspect of silicic volcanism. Of particular importance is the question of how highly viscous magma can lose sufficient gas in order to erupt effusively as a lava flow. Using an array of methods we study the extreme textural heterogeneity of the Rocche Rosse obsidian flow in Lipari, a 2. km long, 100. m thick, ~. 800. year old lava flow, with respect to outgassing and emplacement mechanisms. 2D and 3D vesicle analyses and density measurements are used to classify the lava into four textural types: 'glassy' obsidian (<. 15% vesicles), 'pumiceous' lava (>. 40% vesicles), high aspect ratio, 'shear banded' lava (20-40% vesicles) and lo…

Obsidian010504 meteorology & atmospheric sciencesLavaMineralogySilicicRocche RosseEmplacement610 Medicine & healthVolcanismengineering.material010502 geochemistry & geophysics01 natural sciencesMicrolite170 EthicsGeochemistry and Petrologyddc:55010237 Institute of Biomedical Engineering1908 GeophysicsPetrologyWater content0105 earth and related environmental sciencesOutgassingOutgassingGeophysicsShear (geology)engineeringMeteoric water1906 Geochemistry and PetrologyHeterogeneityGeology
researchProduct

The Fluorescence Detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detecto…

Physics::Instrumentation and DetectorsAstronomyAUGERPIERRE7. Clean energy01 natural sciencesAugerFluorescence detectorData acquisitionDEPENDENCEATMOSPHERIC MULTIPLE-SCATTERINGInstrumentationPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAYSUltra High Energy Cosmic RayCharged particleLIGHTSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAUGERNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaMeasure (physics)FOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSENERGIAFluorescence spectroscopyOptics0103 physical sciencesCosmic rays; Fluorescence detectorRECONSTRUCTION010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryPIERRE010308 nuclear & particles physicsbusiness.industryFísicaULTRA-HIGH ENERGY[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy PhysicsPierre Auger observatoryCAPABILITIESHigh Energy Physics::Experimentbusiness
researchProduct

Search forBs0→μ+μ−andB0→μ+μ−Decays with CDF II

2011

A search has been performed for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays using 7 fb{sup -1} of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B{sup 0} candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of {Beta}(B{sup 0} {yields} {mu}{sup +}{mu}{sup -}) < 6.0 x 10{sup -9} at 95% confidence level. We observe an excess of B{sub s}{sup 0} candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expe…

Flight directionNuclear and High Energy PhysicsParticle physicsMesonTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energyLuminosityStandard Modellaw.inventionNuclear physicsParticle decaychemistry.chemical_compoundlawTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesInvariant massLimit (mathematics)FermilabCollider010306 general physicsPhysicsMuon010308 nuclear & particles physicsBranching fractionSupersymmetryD0 experimentIMesCrystallographychemistryDecay lengthHigh Energy Physics::ExperimentLeptonPhysical Review Letters
researchProduct

A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory

2010

The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierr…

Angstrom exponentAstronomyAstrophysics01 natural sciencesAugerCROSS-SECTIONSCOSMIC-RAY SHOWERSObservatoryDEPENDENCEHigh-Energy Cosmic Ray010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Lidar[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ANGSTROM EXPONENTPierre Auger ObservatoryBi-static lidarELECTRONSComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMULTIPLE-SCATTERINGLight emissionFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLIGHT-EMISSIONAstrophysics - Cosmology and Nongalactic Astrophysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Extensive air showerFOS: Physical sciencesCosmic raySURFACE DETECTORAir fluorescence method0103 physical sciencesExtensive air showersRECONSTRUCTIONAerosolInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryAerosolsCalorimeter (particle physics)Atmospheric effect010308 nuclear & particles physicsAtmosphereFísicaAstronomy and AstrophysicsCosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidarCosmic rayNITROGENAir showerFluorescence Telescopes13. Climate actionExperimental High Energy PhysicsAEROSSOL
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

2011

We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 × 1017 eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.

Large scale anisotripies[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Auger ExperimentAstronomyAstrophysics::High Energy Astrophysical PhenomenaPhase (waves)FOS: Physical sciencesCosmic rayAstrophysicsanisotropySURFACE DETECTOR01 natural sciencesCosmic RayAugerLarge scale anisotropiesObservatoryLarge scale anisotropie0103 physical sciences010303 astronomy & astrophysicsUltra-high energy cosmic rayCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryFÍSICA DE PARTÍCULASUltra High Energy Cosmic Rays.010308 nuclear & particles physicsORIGINPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high energy cosmic raysENERGY-SPECTRUMRadiación cósmicaAnisotropíaAmplitudeHarmonicsUltra-high energy cosmic rays; Large scale anisotropies; Pierre Auger ObservatoryExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGARRAYFísica nuclearRight ascensionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

2011

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ‘‘radio- hybrid’’ measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features …

Source codeAstronomycomputer.software_genre01 natural sciencesObservatoryAuger experimentRadio detectionSOFTWARES (ANÁLISE)Instrumentationcosmic rays; radio detection; analysis software; detector simulationmedia_commonPhysicsPhysicsDetectoranalysis softwareAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsComputer hardwareNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAnalysis softwareDetector simulationCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsCosmic Rayradio detectionNuclear physicscosmic raysRAY AIR-SHOWERS0103 physical sciencesDETECTORSInstrumentation (computer programming)010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industrydetector simulationFísicaCosmic ray[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Software frameworkAir showerExperimental High Energy PhysicsEMISSIONbusinesscomputerMONTE-CARLO SIMULATIONS
researchProduct

HIGH GRADE GLIOMAS AND DIPG

2014

OncologyCancer Researchmedicine.medical_specialtybusiness.industry03 medical and health sciencesAbstracts0302 clinical medicineText miningOncology030220 oncology & carcinogenesisInternal medicinemedicineNeurology (clinical)business030217 neurology & neurosurgery
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

The exposure of the hybrid detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ‘‘hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data coll…

Physics::Instrumentation and DetectorsAstronomy01 natural sciencesCoincidenceAugerFluorescence detectorData acquisitionAuger experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFÍSICA DE PARTÍCULASSettore INF/01 - InformaticaCascada atmosférica extensaPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger Observatoryultra high energy cosmic rays; Pierre Auger Observatory; extensive air showers; trigger; exposure; fluorescence detector; hybridENERGY-SPECTRUMRadiación cósmicaSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaExtensive air showerMeasure (physics)FOS: Physical sciencesCosmic rayCosmic RayFluorescence spectroscopyUltra high energy cosmic rayExposureNuclear physicsOpticsSHOWERS0103 physical sciencesExtensive air showers010306 general physicsCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaAstronomy and AstrophysicsUltra high energy cosmic raysHybrid[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]fluxTriggerExperimental High Energy PhysicsbusinessSYSTEMAstroparticle Physics
researchProduct

Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

2009

Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ ∝ P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ∼ 10% seasonal modulation and ∼ 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is val…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]: 96.50.sdRadiación CósmicaIMPACTAstronomyExtensive air showerFOS: Physical sciencesCosmic rayAstrophysicsExtensive air showers; UHECR; Atmosphere; Weather01 natural sciencesCOSMIC-RAY CASCADESAugerAtmosphereENERGYObservatory0103 physical sciencesExtensive air showersRECONSTRUCTION96.50.sf010303 astronomy & astrophysicsMolière radiusWeatherInstrumentation and Methods for Astrophysics (astro-ph.IM)96.50.sbPierre Auger ObservatoryPhysics010308 nuclear & particles physicsAtmosphereUHECRDetectorFísicaAstronomy and AstrophysicsPresión AtmosféricaPROFILES[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Longitudinal developmentATMOSFERA (ESTUDO)13. Climate actionExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGClimaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory"[Astroparticle Physics 32…

2010

The Pierre Auger Collaboration... K.B. Barber... J.A. Bellido... R.W. Clay... B.R. Dawson... V.C. Holmes... J. Sorokin... P. Wahrlich... B.J. Whelan... M.G. Winnick... et al.

Astroparticle physicsPhysicsPierre Auger Observatory[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010308 nuclear & particles physicsAstronomyDetectorAstronomyAstronomy and AstrophysicsAstrophysics01 natural sciencesAuger[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy Physics0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstroparticle Physics
researchProduct

Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

2010

We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10¹⁸ eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106⁺³⁵₋₂₁) g/cm²/decade below 1018.24 ± 0.05 eV and (24 ± 3) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FLUORESCENCE LIGHTGeneral Physics and AstronomyPierre Auger Observatory; depth of maximum; fluorescence detector; cosmic raysFOS: Physical sciencesCosmic rayChemical CompositionAstrophysicsMass compositionENERGIA01 natural sciencesCoincidenceAugerNuclear physicsPhysics and Astronomy (all)cosmic rays0103 physical sciencesRECONSTRUCTIONHigh-Energy Cosmic Ray010303 astronomy & astrophysicsDETECTORCiencias ExactasPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MeasurementSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ExperimentDetectorPrimary compositionFísicaPierre Auger ObservatoryCOSMIC-RAYSCosmic raylongitudinal developmentLongitudinal developmentRESOLUTIONFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenaenergyPhysical Review Letters
researchProduct

An expanded model and application of the combined effect of crystal-size distribution and crystal shape on the relative viscosity of magmas

2018

International audience; This study examines the combined effect of crystal-size distributions (CSD) and crystal shape on the rheology of vesicle free magmatic suspensions and provides the first practical application of an empirical model to estimate the relative effect of crystal content and CSD's on the viscosity of magma directly from textural image analysis of natural rock samples in the form of a user-friendly texture-rheology spreadsheet calculator. We extend and apply established relationships between the maximum packing fraction ϕm of a crystal bearing suspension and both its rheological properties and the polydispersity γ of a CSD. By using analogue rotational rheometric experiments…

010504 meteorology & atmospheric sciencesRelative viscosityDispersityThermodynamicsMagma rheologyCrystal size distribution010502 geochemistry & geophysicsAtomic packing factor01 natural sciencesCrystalViscosityGeophysicsRheologyGeochemistry and PetrologyMagma[SDU.STU.VO]Sciences of the Universe [physics]/Earth Sciences/VolcanologySuspension (vehicle)GeologyCrystal shape0105 earth and related environmental sciences
researchProduct

Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

2011

Erratum: Phys. Rev. D 85, 029902(E) (2012) [http://dx.doi.org/10.1103/PhysRevD.85.029902]

Physics::Instrumentation and DetectorsSolar neutrinoAstrophysicsUPPER LIMITPHOTON FRACTION01 natural sciences7. Clean energyneutrinoObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsORIGINPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pionAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryCOSMIC-RAYScosmic ray detectorsand other elementary particle detectorsCosmic neutrino backgroundNEUTRINOSFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFLUXFERMI-LATNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TELESCOPEAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSSURFACE DETECTORCosmic RayPionmuon0103 physical sciencesNeutrino010306 general physicsCosmic raysPierre Auger ObservatoryMuon010308 nuclear & particles physicsFísicaand other elementary particlesUltra-high energy cosmic raysPERFORMANCECosmic rayneutrino flavor; air showers; surface detector; observatory; atmosphere; Auger; cosmic radiation; energy spectrum13. Climate actionHigh Energy Physics::Experiment
researchProduct

The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

2011

We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than $60^\circ$, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution t…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentCosmic rayAstrophysicsultra high energy cosmic raysEXTENSIVE AIR-SHOWERS01 natural sciencesDeclinationultra high energy cosmic ray0103 physical sciencescosmic rays detectors; cosmic ray experiments; ultra high energy cosmic rayscosmic rays detectorAnisotropyInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsZenithParticle detectors.Pierre Auger ObservatoryPhysics010308 nuclear & particles physicsPhysicsOBSERVATÓRIOSAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AzimuthMODELEarth's magnetic fieldPhysics::Space PhysicsLarge detector systems for particle and astroparticle physicARRAYFísica nuclearcosmic rays detectorscosmic ray experimentsAstrophysics - Instrumentation and Methods for AstrophysicsEnergy (signal processing)Cherenkov detectorJournal of Cosmology and Astroparticle Physics
researchProduct

Trigger and aperture of the surface detector array of the Pierre Auger Observatory

2010

The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive airshowers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidates howers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 1018 eV, for all zenith angles between 03 and 603, independently of the position of the impact point and of the mass of the primary particl…

Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; ExposurePhysics::Instrumentation and DetectorsAstronomyHigh-Energy Cosmi Ray7. Clean energy01 natural sciencesAugerAcceptance and Trigger Efficiency010303 astronomy & astrophysicsInstrumentationComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)PhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryHigh energyFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AIR SHOWERSApertureInstrumentationAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerFOS: Physical sciencesCosmic rayENERGIACosmic RayUltra high energy cosmic rayExposureOpticsultra high energy cosmic rays Auger Observatory extensive airshowers trigger exposure0103 physical sciencesPARTICLESExtensive air showersSurface DetectorInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaUltra high energy cosmic raysUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]TriggerAuger ObservatoryExperimental High Energy PhysicsHigh Energy Physics::Experimentbusiness
researchProduct