0000000000173340

AUTHOR

Paulo J. S. Gonçalves

showing 29 related works from this author

Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory

2010

We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstronomyAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumFluxFOS: Physical sciencesCosmic rayAstrophysicsElectronSURFACE DETECTORUPPER LIMITENERGIAPHOTON FRACTION01 natural sciencesSpectral lineAugerNuclear physicscosmic raysObservatorySHOWERS0103 physical sciencesHigh-Energy Cosmic Ray010306 general physicsCosmic raysCiencias ExactasPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Spectral densityFísicaPierre Auger ObservatoryCosmic rayELECTRONS3. Good healthPierre Auger Observatory; Cosmic rays; Energy spectrumSIMULATIONExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaARRAYFísica nuclearEnergy spectrumAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Rapidity correlations in Lambda baryon and proton production in hadronic Z0 decays

1998

In an analysis of multihadronic events recorded at LEP by DELPHI in the years 1992 through 1994, charged hadrons are identified using the measurement of their energy loss and their Cherenkov angle. Rapidity correlations of \La-\La, proton-proton, and \La-proton pairs are compared. The agreement with the string and cluster fragmentation models is tested. For those pairs that frame a meson in terms of rapidity the compensation of strangeness is studied. For \La{}$\overline{\mathrm{p}}$ pairs the additional correlation with respect to charged kaons is analysed.

IMAGING CHERENKOV DETECTOR; DELPHIParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationHadronNuclear TheoryStrangenessLambdaLambda baryon01 natural sciencesPartícules (Física nuclear)Nuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Rapidity010306 general physicsNuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERIMAGING CHERENKOV DETECTORLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Measurement of trilinear gauge couplings in e(+)e(-) collisions at 161 GeV and 172 GeV

1998

Trilinear gauge boson couplings are measured using data taken by DELPHI at 161 GeV and 172 GeV, Values for WWV couplings (V = Z,gamma) are determined from a study of the reactions e(+)e(-) --> W+W- and e(+)e(-) --> We nu, using differential distributions from the WW final state in which one W decays hadronically and the other leptonically, and total cross,section data from other channels, Limits are also derived on neutral ZV gamma couplings from an analysis of the reaction e(+)e(-) --> gamma + invisible particles. (C) 1998 Elsevier Science B.V.

Particle physicsNuclear and High Energy PhysicsElectron–positron annihilation7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesOPTIMAL OBSERVABLES[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentOPTIMAL OBSERVABLES; PHOTON COUPLINGS; ROOT-S=1.8 TEVDELPHIPhysicsGauge boson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyROOT-S=1.8 TEVGauge (firearms)LARGE ELECTRON POSITRON COLLIDERPHOTON COUPLINGSLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

First evidence for a charm radial excitation, D

1998

Using D*+ mesons exclusively reconstructed in the DELPHI detector at LEP, an excess of 66 +/- 14(stat.) events is observed in the D(*+)pi(+)pi(-) final state with a mass of 2637 +/- 2(stat.) +/- 6(syst.) MeV/c(2) and a full width smaller than 15 MeV/c(2) (95% C.L.). This signal is compatible with the expected decay of a radially excited D*' (J(P) = 1(-))meson. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Nuclear and High Energy PhysicsParticle physicsMesonLUND MONTE-CARLOSYMMETRYElectron–positron annihilationNuclear TheoryHEAVY-QUARK01 natural sciencesJET FRAGMENTATIONPartícules (Física nuclear)Full widthNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)Nuclear Experiment010306 general physicsSpectroscopyPRODUCTION-RATESDELPHIPhysicsSPECTROSCOPYE+E-PHYSICS010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDELPHI DETECTORLARGE ELECTRON POSITRON COLLIDERMESONSLUND MONTE-CARLO; HEAVY-QUARK; JET FRAGMENTATION; PRODUCTION-RATES; DELPHI DETECTOR; E+E-PHYSICS; MESONS; SPECTROSCOPY; SYMMETRY; LIGHTLIGHTExcited statePARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentExcitation
researchProduct

Energy dependence of inclusive spectra in e+ e- annihilation

1999

Inclusive charged hadron distributions as obtained from the DELPHI measurements at 130, 136, 161, 172 and 183 GeV are presented as a function of the variables rapidity, xi(p), p and transversal momenta. Data are compared with event generators and with MLLA calculations, in order to examine the hypothesis of local parton hadron duality. The differential momentum spectra show an indication for coherence effects in the production of soft particles. The relation between the energy dependence of the charged multiplicity and the rapidity distribution is examined. (C) 1999 Elsevier Science B.V. All rights reserved.

Nuclear and High Energy PhysicsParticle physicsE+E ANNIHILATIONElectron–positron annihilationHadronParton01 natural sciencesCHARGED-PARTICLE MULTIPLICITY; QCD JETS; E+E ANNIHILATION; FRAGMENTATION; EVENTSSpectral lineQCD JETSEVENTSNuclear physics0103 physical sciencesCHARGED-PARTICLE MULTIPLICITY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RapidityMultiplicity (chemistry)Nuclear Experiment010306 general physicsDELPHIPhysicsAnnihilation010308 nuclear & particles physicsLARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::ExperimentFRAGMENTATIONParticle Physics - Experiment
researchProduct

Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory

2009

Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming ντ may interact in the Earth's crust and produce a τ lepton by means of charged-current interactions. The τ lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by τ decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is de…

ACTIVE GALACTIC NUCLEIASTROPHYSICS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsActive galactic nucleusPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayPROPAGATIONAstrophysics7. Clean energy01 natural sciencesLeptonSpectral lineSettore FIS/04 - Fisica Nucleare e SubnucleareAugerSEARCHTau neutrino0103 physical sciencesTau neutrinoOSCILLATIONS010306 general physicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSPierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaultrahigh energy cosmic rays ; tau neutrinos ; Pierre Auger ObservatoryDiffuse fluxPierre Auger ObservatoryPERFORMANCECOSMIC-RAYScosmic radiation13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonPhysical Review D
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

Search for chargino pair production in scenarios with gravitino LSP and stau NLSP at GeV at LEP

1999

Promptly decaying lightest charginos were searched for in the context of scenarios with gravitino LSP. It was assumed that the stau is the next to lightest supersymmetric particle (NLSP). Data collected with the DELPHI detector at a centre-of-mass energy near 183~{~mbox{${mathrm{GeV}}$}}\nwere analysed combining the methods developed in previous searches. No evidence for the production of these particles was found. Hence, limits were derived at 95% confidence level. The mass of charginos was found to be greater than 85.5~GeV/$c^2$ for $m_{ ilde{chi}^+_1}-m_{ ilde{ au}_1}geq 0.3 {mathrm{GeV}}/c^2$, independently of the mass of the gravitino.

PhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsElectron–positron annihilationHigh Energy Physics::PhenomenologyContext (language use)01 natural sciencesLightest Supersymmetric ParticleNuclear physicsPair productionChargino0103 physical sciencesHigh Energy Physics::ExperimentGravitinoProduction (computer science)010306 general physicsEnergy (signal processing)Physics Letters B
researchProduct

Energy dependence of event shapes and of $\alpha_s$ at LEP 2

1999

Infrared and collinear safe event shape distributions and their mean values are determined using the data taken at five different centre of mass energies above M-Z with the DELPHI detector at LEP. From the event shapes, the strong coupling alpha(s) is extracted in O(alpha(s)(2)), NLLA and a combined scheme using hadronisation corrections evaluated with fragmentation model generators as well as using an analytical power ansatz. Comparing these measurements to those obtained at M-Z, the energy dependence (running) of alpha(s) is accessible. The logarithmic energy slope of the inverse strong coupling is measured to be d alpha(s)(-1)/d log(E-cm) = 1.39 +/- 0.34 (stat) +/- 0.17(syst), in good ag…

Particle physicsNuclear and High Energy PhysicsE+E ANNIHILATIONZ(0) RESONANCELogarithmInfraredElectron–positron annihilationMonte Carlo methodTRISTANInversePREDICTIONS01 natural sciencesPartícules (Física nuclear)Nuclear physicsMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsAnsatzDELPHIQuantum chromodynamicsPhysics010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERHADRONIC Z-DECAYSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIQCD MODELSPARTICLE PHYSICSHADRONIC Z-DECAYS; E+E ANNIHILATION; Z(0) RESONANCE; MONTE-CARLO; QCD MODELS; FRAGMENTATION; PREDICTIONS; TRISTANFísica nuclearHigh Energy Physics::ExperimentFRAGMENTATIONParticle Physics - Experiment
researchProduct

Muons in air showers at the Pierre Auger Observatory

2015

We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68±0.04±0.48(sys))×107 muons with energies large…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsCosmic-ray interactionsAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayextensive atmospherical showers muon density muon number Pierre Auger Observatory cosmic radiation UHEHadronic interaction models7. Clean energyAugerSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicsAltitudeSettore FIS/05 - Astronomia e AstrofisicaObservatoryNERGY COSMIC-RAYS DETECTOR MODEL.Extensive air showerscosmic radiation UHEDETECTORScalingCosmic raysZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryMuonNERGY COSMIC-RAYSSettore FIS/01 - Fisica Sperimentaleenergy cosmic-rays; detector; modelAstrophysics::Instrumentation and Methods for AstrophysicsFísica[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ObservatoryASTROFÍSICAextensive atmospherical showersmuon numberMODELmuon densityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaPhysical Review D
researchProduct

Charged particle multiplicity in e^{+}e_{-}$ → q[L:q] events at 161 and 172 GeV and from the decay of the W boson

1998

The data collected by DELPHI in 1996 have been used to measure the average charged particle multiplicities and dispersions in $q\bar{q}$ events at centre-of-mass energies of $\sqrt{s}=161$~GeV and $\sqrt{s}=172$~GeV, and the average charge multiplicity in WW events at $\sqrt{s}=172$~GeV. The multiplicities in $q\bar{q}$ events are consistent with the evolution predicted by QCD. The dispersions in the multiplicity distributions are consistent with Koba-Nielsen-Olesen (KNO) scaling. The average multiplicity of charged particles in hadronic W decays has been measured for the first time; its value, $19.23 \pm 0.74 (stat+syst)$, is consistent with that expected for an $e^+e^-$ interaction at a c…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsAnnihilation010308 nuclear & particles physicsElectron–positron annihilationHadronMultiplicity (mathematics)PartonCharge (physics)01 natural sciencesCharged particleNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics letters: B
researchProduct

Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

2015

Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×1019 eV by analyzing cosmic rays with energies above E ≥ 5×1018 eV arriving within an angular separation of approximately 15∘. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with …

AstrofísicaPhysics and Astronomy (miscellaneous)Raycosmic radiation anisotropy cosmic radiation propagation cosmic radiation deflectionAstronomymagnetic fieldpAstrophysicsanisotropy [cosmic radiation]01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareAugerPierre//purl.org/becyt/ford/1 [https]ObservatoryJetsQuantum Chromodynamicscosmic radiation: VHEenergy: correlationPatternsMonte Carlo010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic radiation: propagationEnergyCOSMIC cancer databaseAngular distance[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsSettore FIS/01 - Fisica SperimentaleSearchAstrophysics::Instrumentation and Methods for Astrophysicscosmic radiation anisotropyPierre Auger Observatorycosmic radiation: deflectionRadiación cósmicaAugerSurface Detector ArrayCosmicArrivalComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaPrincipal axis theorem[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Regular Article - Experimental PhysicsAstrophysics::High Energy Astrophysical PhenomenaPhysics and Astronomy (miscellaneous) Engineering (miscellaneous).FOS: Physical sciencesCosmic ray530cosmic radiation: anisotropyParticle detectorSettore FIS/05 - Astronomia e AstrofisicaVHE [cosmic radiation]statistical analysisSpectrum0103 physical sciencesthrustddc:530Engineering (miscellaneous)AstrophysiqueCiencias ExactasPierre Auger Observatoryair: showerscosmic radiation propagationPhysics and Astronomy (miscellaneous); Engineering (miscellaneous)010308 nuclear & particles physicsturbulence[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstroparticles//purl.org/becyt/ford/1.3 [https]ASTROFÍSICAGalactic Magnetic-fieldcorrelation [energy]DirectionExperimental High Energy Physicscosmic radiation deflectionpropagation [cosmic radiation]direct detectiongalaxyObservatory[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]deflection [cosmic radiation]showers [air]Model
researchProduct

A measurement of the branching fractions of the b quark into charged and neutral b hadrons

2003

The production fractions of charged and neutral b-hadrons in b-quark events from Z0 decays have been measured with the DELPHI detector at LEP. An algorithm has been developed, based on a neural network, to estimate the charge of the weakly-decaying b-hadron by distinguishing its decay products from particles produced at the primary vertex. From the data taken in the years 1994 and 1995, the fraction of bbar-quarks fragmenting into positively charged weakly-decaying b-hadrons has been measured to be: f^+ = (42.09 +/- 0.82 (stat.) +/- 0.89 (syst.))%. Subtracting the rates for charged Xibar_b^+ and Omegabar_b^+ baryons gives the production fraction of B^+ mesons: f_Bu = (40.99 +/- 0.82 (stat.)…

QuarkParticle physicsNuclear and High Energy PhysicsMesonElectron–positron annihilationHadronNuclear TheoryFOS: Physical sciencesLIFETIMEBranching (polymer chemistry)01 natural sciencesBottom quarkOmegaHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentZ-DECAYSDELPHIPhysicsBARYONS010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyLEPMESONSLARGE ELECTRON POSITRON COLLIDERBaryonPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIZ-DECAYS; LIFETIME; BARYONS; MESONS; LEPPARTICLE PHYSICSHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

2011

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ‘‘radio- hybrid’’ measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features …

Source codeAstronomycomputer.software_genre01 natural sciencesObservatoryAuger experimentRadio detectionSOFTWARES (ANÁLISE)Instrumentationcosmic rays; radio detection; analysis software; detector simulationmedia_commonPhysicsPhysicsDetectoranalysis softwareAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsComputer hardwareNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAnalysis softwareDetector simulationCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsCosmic Rayradio detectionNuclear physicscosmic raysRAY AIR-SHOWERS0103 physical sciencesDETECTORSInstrumentation (computer programming)010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industrydetector simulationFísicaCosmic ray[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Software frameworkAir showerExperimental High Energy PhysicsEMISSIONbusinesscomputerMONTE-CARLO SIMULATIONS
researchProduct

Measurement of correlations between pions from different W's in e+e- → W+W- events

1997

Correlations between pions from different W's in e(+)e(-) --> W+W- events are studied using data collected by the DELPHI detector at LEP running at a centre-of-mass energy of 172 GeV in 1996. At the present level of statistics, no enhancement of the correlation function above that expected from a pair of uncorrelated W's is observed at small values of the four-momentum difference of the pions. (C) 1997 Published by Elsevier Science B.V.

Nuclear and High Energy PhysicsParticle physicsLUND MONTE-CARLOElectron–positron annihilationBOSE-EINSTEIN CORRELATIONS; LUND MONTE-CARLO; JET FRAGMENTATION; PHYSICS; INTERFEROMETRY; DECAYS; Z(0); Z001 natural sciencesJET FRAGMENTATIONDECAYSPartícules (Física nuclear)Nuclear physicsPHYSICSINTERFEROMETRYPionCorrelation function0103 physical sciencesZ0010306 general physicsNuclear ExperimentDELPHIPhysics010308 nuclear & particles physicsAcceleradors de partículesBose–Einstein correlationsZ(0)LARGE ELECTRON POSITRON COLLIDERUncorrelatedBOSE-EINSTEIN CORRELATIONSLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::Experiment
researchProduct

Two-particle angular correlations in e(+)e(-) interactions compared with QCD predictions

1998

Two-particle angular correlations in jet cones have been measured in e(+)e(-) annihilation into hadrons at LEP energies (root s = 91 and 183 GeV) and are compared with QCD predictions using the LPHD hypothesis. Two different functions have been tested. While the differentially normalized correlation function shows substantial deviations from the predictions, a globally normalized correlation function agrees well. The size of alpha(s)(eff) land other QCD parameters) and its running with the relevant angular scale, the validity of LPHD, and problems due to non-perturbative effects are discussed critically. (C) 1998 Elsevier Science B.V. All rights reserved.

Particle physicsNuclear and High Energy PhysicsHadronMonte Carlo methodJet (particle physics)01 natural sciencesPartícules (Física nuclear)Spectral lineNuclear physicsMONTE-CARLO0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SPECTRA010306 general physicsDELPHIPhysicsQuantum chromodynamicsMONTE-CARLO; JETS; SPECTRAAnnihilation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFunction (mathematics)LARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderJETSPARTICLE PHYSICSFísica nuclearHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

2015

We analyze the distribution of arrival directions of ultra-high energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to $80^\circ$, thus covering from $-90^\circ$ to $+45^\circ$ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the V��ron-Cetty and V��ron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes and for self-clustering of event directions at angular scales up t…

acceleration of particles; astroparticle physicsNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Upper LimitAstronomyCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFieldCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOtras Ciencias Físicas01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareSettore FIS/05 - Astronomia e AstrofisicaObservatorySpectrum0103 physical sciencesacceleration of particles astroparticle physicsSurface Detector010303 astronomy & astrophysicsacceleration of particleAstrophysics::Galaxy Astrophysicsacceleration of particlesPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleArrayAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]astroparticle physicAstronomy and AstrophysicsASTROFÍSICANucleiSpace and Planetary Scienceastroparticle physicsExperimental High Energy Physicsacceleration of particles; astroparticle physics; Nuclear and High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearCatalogSkyAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

2009

Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ ∝ P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ∼ 10% seasonal modulation and ∼ 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is val…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]: 96.50.sdRadiación CósmicaIMPACTAstronomyExtensive air showerFOS: Physical sciencesCosmic rayAstrophysicsExtensive air showers; UHECR; Atmosphere; Weather01 natural sciencesCOSMIC-RAY CASCADESAugerAtmosphereENERGYObservatory0103 physical sciencesExtensive air showersRECONSTRUCTION96.50.sf010303 astronomy & astrophysicsMolière radiusWeatherInstrumentation and Methods for Astrophysics (astro-ph.IM)96.50.sbPierre Auger ObservatoryPhysics010308 nuclear & particles physicsAtmosphereUHECRDetectorFísicaAstronomy and AstrophysicsPresión AtmosféricaPROFILES[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Longitudinal developmentATMOSFERA (ESTUDO)13. Climate actionExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGClimaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Study of the four-jet anomaly observed at LEP centre-of-mass energies of 130 and 136 GeV

1999

The four-jet events collected by DELPHI during the special LEP run at centre-of-mass energies of 130 and 136 GeV in 1997 with an integrated luminosity of 5.9 pb(-1) are analysed. Their rate and the distributions of their di-jet masses, their smallest jet charges, and their di-jet charge separations all agree well with Standard Model predictions. Thus the hypothesis of pair production of a new particle with a sum of di-jet masses around 105 GeV/c(2) is not supported. The combined result of the four LEP collaborations refuting this hypothesis at over 99% confidence level is also given. (C) 1999 Published by Elsevier Science B.V. All rights reserved.

Nuclear and High Energy PhysicsParticle physics4-JET EVENTS; DETECTOR; SEARCHAstrophysics::High Energy Astrophysical PhenomenaJet (particle physics)01 natural sciencesStandard ModelNuclear physicsSEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Combined result010306 general physicsDETECTORDELPHIPhysicsLuminosity (scattering theory)010308 nuclear & particles physicsCharge (physics)LARGE ELECTRON POSITRON COLLIDER4-JET EVENTSPair productionPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHILarge Electron–Positron ColliderPARTICLE PHYSICSHigh Energy Physics::ExperimentAnomaly (physics)Particle Physics - Experiment
researchProduct

Search for $B^0_s-\overline{B^0_s}$ oscillations and a measurement of $B^0_d-\overline{B^0_d}$ oscillations using events with an inclusively reconstr…

2003

Neutral B meson oscillations in the B-s(0) - , and B-d(0) - systems were studied using a sample of about 4.0 million hadronic Z decays recorded by the DELPHI detector between 1992 and 2000. Events with a high transverse momentum lepton were removed and a sample of 770 k events with an inclusively reconstructed vertex was selected. The mass difference between the two physical states in the B-d(0) - system was measured to be: Deltam(d) = (0.531 +/- 0.025(stat.) +/- 0.007(syst.))ps(-1). The following limit on the width difference of these states was also obtained: DeltaGamma(Bd)/Gamma(Bd) oscillations was found, a limit on the mass difference of the two physical states was given:, Deltam(s) > …

PhysicsParticle physicsPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsPhysicsElectron–positron annihilationHadron01 natural sciencesVertex (geometry)Nuclear physics0103 physical sciencesTransverse momentumHigh Energy Physics::ExperimentB meson010306 general physicsEngineering (miscellaneous)LeptonThe European Physical Journal C
researchProduct

Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory"[Astroparticle Physics 32…

2010

The Pierre Auger Collaboration... K.B. Barber... J.A. Bellido... R.W. Clay... B.R. Dawson... V.C. Holmes... J. Sorokin... P. Wahrlich... B.J. Whelan... M.G. Winnick... et al.

Astroparticle physicsPhysicsPierre Auger Observatory[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010308 nuclear & particles physicsAstronomyDetectorAstronomyAstronomy and AstrophysicsAstrophysics01 natural sciencesAuger[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy Physics0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstroparticle Physics
researchProduct

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

2014

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…

AstrofísicaPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyCiencias Físicasmuonshadronic interaction modelsAstrophysics01 natural sciencesHigh Energy Physics - ExperimentAuger//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Air showersProduction depthSURFACE DETECTOR ARRAY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh-Energy Cosmic Rays[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Pierre Auger ObservatoryObservableInstrumentation and Detectors (physics.ins-det)COSMIC-RAYSlongitudinal developmentCore (optical fiber)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayNuclear physicscosmic rays[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesextensive air showers[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger ObservatoryMuon010308 nuclear & particles physics[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Física//purl.org/becyt/ford/1.3 [https]ASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomíaMODELExperimental High Energy PhysicsHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]muonic componentSYSTEM
researchProduct

Measurement of inclusive ρ0, f0(980), f2(1270), K and f′2(1525) production in Z0 decays

1999

DELPHI results are presented on the inclusive production of the neutral mesons ρ0, f0(980), f2(1270), KView the MathML source and f′2(1525) in hadronic Z0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z0 decay have been determined to be: 1.19±0.10 for ρ0; 0.164±0.021 for f0(980); 0.214±0.038 for f2(1270); 0.073±0.023 for KView the MathML source; and 0.012±0.006 for f′2(1525). The total production rates for all mesons and differential cross-sections for …

PhysicsNuclear and High Energy PhysicsParticle physicsTime projection chamberMeson010308 nuclear & particles physicsElectron–positron annihilationHadron01 natural sciencesParticle identificationIonization0103 physical sciencesLarge Electron–Positron Collider010306 general physicsCherenkov radiationPhysics Letters B
researchProduct

Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

2008

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7  GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019  eV.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FLUORESCENCE DETECTORAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyOsservatorio Pierre AugerCosmic ray7. Clean energy01 natural sciencesNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]PACS: 95.55.Vj 95.85.Ry 98.70.SaPionRaggi cosmicimuonSEARCH0103 physical sciencesNeutrinoEARTHPartículas ElementalesElectromagnetismo010306 general physicsCosmic raysCharged currentCiencias ExactasPierre Auger ObservatoryPhysicsAIR-SHOWERSRange (particle radiation)Muon[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicspionand other elementary particlesFísicaDETETOREScosmic ray detectorsEnergia ultra altaRadiación cósmicaCOSMIC-RAYSand other elementary particle detectors13. Climate actionHigh Energy Physics::ExperimentNeutrinoSciami atmosferici estesiLepton
researchProduct

Trigger and aperture of the surface detector array of the Pierre Auger Observatory

2010

The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive airshowers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidates howers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 1018 eV, for all zenith angles between 03 and 603, independently of the position of the impact point and of the mass of the primary particl…

Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; ExposurePhysics::Instrumentation and DetectorsAstronomyHigh-Energy Cosmi Ray7. Clean energy01 natural sciencesAugerAcceptance and Trigger Efficiency010303 astronomy & astrophysicsInstrumentationComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)PhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryHigh energyFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AIR SHOWERSApertureInstrumentationAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerFOS: Physical sciencesCosmic rayENERGIACosmic RayUltra high energy cosmic rayExposureOpticsultra high energy cosmic rays Auger Observatory extensive airshowers trigger exposure0103 physical sciencesPARTICLESExtensive air showersSurface DetectorInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaUltra high energy cosmic raysUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]TriggerAuger ObservatoryExperimental High Energy PhysicsHigh Energy Physics::Experimentbusiness
researchProduct

mb at MZ

1998

Abstract The value of the b quark mass at the M Z scale defined in the MS renormalization scheme, m b ( M Z ), was determined using 2.8 million hadronic Z decays collected during 1992-1994 by the DELPHI detector to be m b (M Z )=2.67±0.25 ( stat. )±0.34 ( frag. )±0.27 ( theo. ) GeV/c 2 . The analysis considers NLO corrections to the three-jet production rate including mass effects, and the result obtained agrees with the QCD prediction of having a running b quark mass at an energy scale equal to M Z . This is the first time that such a measurement is performed far above the b b production threshold. The study also verifies the flavour independence of the strong coupling constant for b and l…

PhysicsQuantum chromodynamicsQuarkNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFlavourHadron01 natural sciencesBottom quarkLARGE ELECTRON POSITRON COLLIDERRenormalizationNuclear physics0103 physical sciencesLarge Electron–Positron ColliderPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSHigh Energy Physics::Experiment010306 general physicsProduction rateDELPHI
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct