0000000000173534

AUTHOR

Juan Moreno

showing 24 related works from this author

Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory

2010

We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstronomyAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumFluxFOS: Physical sciencesCosmic rayAstrophysicsElectronSURFACE DETECTORUPPER LIMITENERGIAPHOTON FRACTION01 natural sciencesSpectral lineAugerNuclear physicscosmic raysObservatorySHOWERS0103 physical sciencesHigh-Energy Cosmic Ray010306 general physicsCosmic raysCiencias ExactasPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Spectral densityFísicaPierre Auger ObservatoryCosmic rayELECTRONS3. Good healthPierre Auger Observatory; Cosmic rays; Energy spectrumSIMULATIONExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaARRAYFísica nuclearEnergy spectrumAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Geographical variation in egg mass and egg content in a passerine bird

2011

Reproductive, phenotypic and life-history traits in many animal and plant taxa show geographic variation, indicating spatial variation in selection regimes. Maternal deposition to avian eggs, such as hormones, antibodies and antioxidants, critically affect development of the offspring, with long-lasting effects on the phenotype and fitness. Little is however known about large-scale geographical patterns of variation in maternal deposition to eggs. We studied geographical variation in egg components of a passerine bird, the pied flycatcher (Ficedula hypoleuca), by collecting samples from 16 populations and measuring egg and yolk mass, albumen lysozyme activity, yolk immunoglobulins, yolk and…

0106 biological sciencesAvian clutch sizeAnimal sexual behaviourlcsh:MedicineBreeding01 natural sciencesOrnithologyPasseriformeslcsh:SciencePhysiological EcologyCarotenoidFLYCATCHER FICEDULA-HYPOLEUCAchemistry.chemical_classification0303 health scienceseducation.field_of_studyMultidisciplinaryEcologyGeographybiologyBARN SWALLOW EGGSEcologyPasserinePhenotype1181 Ecology evolutionary biologyembryonic structuresCOLLARED FLYCATCHERPARENTAL QUALITYResearch ArticleCLUTCH-SIZEfood.ingredientPIED FLYCATCHERPopulationZoology010603 evolutionary biologyEvolution Molecular03 medical and health sciencesQH301foodYolkbiology.animalAnimalsTIT PARUS-MAJORYOLK STEROID-LEVELSLATITUDINAL VARIATIONSelection GeneticeducationBiologyOvum030304 developmental biologyLocal adaptationQHlcsh:RFicedulaLAYING ORDERbiology.organism_classificationchemistryEvolutionary Ecologyta1181lcsh:QPopulation EcologyGenetic FitnessZoology
researchProduct

Constraints on the origin of cosmic rays above 10^18 eV from large-scale anisotropy searches in data of the Pierre Auger Observatory

2012

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 10(…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesMAGNETIC-FIELDScosmic raysObservatory0103 physical sciencesUltra-high-energy cosmic rayAnisotropyastroparticle physics – cosmic rays010303 astronomy & astrophysicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryAstroparticle physicsPhysicsCOSMIC cancer database010308 nuclear & particles physicsOBSERVATÓRIOS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyastroparticle physicFísicaAstronomy and AstrophysicsRadiación cósmica13. Climate actionSpace and Planetary Scienceastroparticle physicsExperimental High Energy PhysicsQuadrupoleComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica de partículasFísica nuclearAstroparticle physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The design of artificial nestboxes for the study of secondary hole-nesting birds: A review of methodological inconsistencies and potential biases

2010

The widespread use of artificial nestboxes has led to significant advances in our knowledge of the ecology, behaviour and physiology of cavity nesting birds, especially small passerines. Nestboxes have made it easier to perform routine monitoring and experimental manipulation of eggs or nestlings, and also repeatedly to capture, identify and manipulate the parents. However, when comparing results across study sites the use of nestboxes may also introduce a potentially significant confounding variable in the form of differences in nestbox design amongst studies, such as their physical dimensions, placement height, and the way in which they are constructed and maintained. However, the use of …

PASSERINES0106 biological sciencesNest-box design measuresPARUSSECONDARY CAVITY-NESTING BIRDSOtras Ciencias BiológicasNEST SITESFLYCATCHERFicedula010603 evolutionary biology01 natural sciences[ SDV.EE ] Life Sciences [q-bio]/Ecology environment010605 ornithologymethodsfield experimentsCiencias BiológicasnestboxestitCyanistesResearch basedStatisticsNESTBOXESFIELD EXPERIMENTSNest boxBiological sciencesBiologysecondary cavity-nesting birdsFICEDULAParus[SDV.EE]Life Sciences [q-bio]/Ecology environment[ SDE.BE ] Environmental Sciences/Biodiversity and EcologybiologyEcologyCyanistesFicedulanest sitespasserinesbiology.organism_classification3. Good healthTITSettore AGR/11 - Entomologia Generale E ApplicataCYANISTESflycatcherParusMETHODSNesting (computing)Animal Science and Zoology[SDE.BE]Environmental Sciences/Biodiversity and EcologyCIENCIAS NATURALES Y EXACTAS
researchProduct

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory

2009

Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming ντ may interact in the Earth's crust and produce a τ lepton by means of charged-current interactions. The τ lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by τ decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is de…

ACTIVE GALACTIC NUCLEIASTROPHYSICS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsActive galactic nucleusPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayPROPAGATIONAstrophysics7. Clean energy01 natural sciencesLeptonSpectral lineSettore FIS/04 - Fisica Nucleare e SubnucleareAugerSEARCHTau neutrino0103 physical sciencesTau neutrinoOSCILLATIONS010306 general physicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSPierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaultrahigh energy cosmic rays ; tau neutrinos ; Pierre Auger ObservatoryDiffuse fluxPierre Auger ObservatoryPERFORMANCECOSMIC-RAYScosmic radiation13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonPhysical Review D
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

Measurement of the Proton-Air Cross Section ats=57  TeVwith the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 +/- 22(stat)(-36)(+28)(syst)] mb is found.

Pierre Auger ObservatoryPhysicsProton010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and Astronomy01 natural scienceslaw.inventionAugerNuclear physicsCross section (physics)law0103 physical sciencesHigh Energy Physics::ExperimentFermilabNuclear Experiment010306 general physicsNucleonColliderPhysical Review Letters
researchProduct

Search for point-like sources of ultra-high energy neutrinos at the pierre auger observatory and improved limit on the diffuse flux of tau neutrinos

2012

The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy Eν between 1017 eV and 1020 eV from point-like sources across the sky south of +55º and north of −65º declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth’s crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ∼3.5 years of a full surface detector array for the Earth-skimming channel and ∼2 years…

Physics::Instrumentation and DetectorsSolar neutrinoAstronomyAstrophysics01 natural sciences7. Clean energyneutrinoTelescopiosTau neutrinoastroparticle physics; cosmic rays; neutrinos; telescopes010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)cosmic rayPhysics[PHYS]Physics [physics]High Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrinosCOSMIC-RAYSCosmic neutrino backgroundastroparticle physicsMeasurements of neutrino speedFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstrophysics::High Energy Astrophysical PhenomenaTELESCÓPIOSFOS: Physical sciencesAstroparticle physiccosmic rays0103 physical sciencesDETECTORCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaAstronomy and AstrophysicstelescopesSolar neutrino problem13. Climate actionSpace and Planetary ScienceExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Lepton
researchProduct

Large-scale distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory

2012

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 1018 eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 1018 eV from stationary Galactic …

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Radiación CósmicaAstronomyMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsEXTENSIVE AIR-SHOWERSSURFACE DETECTOR01 natural sciencesGALACTIC MAGNETIC-FIELDSAuger[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]cosmic raysObservatory0103 physical sciencesastroparticle physics; cosmic raysAnisotropy010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Ciencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsPierre Auger ObservatoryANISOTROPY010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFísicaAstronomy and AstrophysicsENERGY-SPECTRUMUltra-High Energy Cosmic Rays Pierre Auger Observatory Large Scale AnisotropiesSpace and Planetary Scienceastroparticle physicsExperimental High Energy PhysicsROTATIONARRAYFísica nuclearAstroparticle physicsRight ascensionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The Fluorescence Detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detecto…

Physics::Instrumentation and DetectorsAstronomyAUGERPIERRE7. Clean energy01 natural sciencesAugerFluorescence detectorData acquisitionDEPENDENCEATMOSPHERIC MULTIPLE-SCATTERINGInstrumentationPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAYSUltra High Energy Cosmic RayCharged particleLIGHTSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAUGERNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaMeasure (physics)FOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSENERGIAFluorescence spectroscopyOptics0103 physical sciencesCosmic rays; Fluorescence detectorRECONSTRUCTION010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryPIERRE010308 nuclear & particles physicsbusiness.industryFísicaULTRA-HIGH ENERGY[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy PhysicsPierre Auger observatoryCAPABILITIESHigh Energy Physics::Experimentbusiness
researchProduct

Connecting the data landscape of long-term ecological studies: the SPI-Birds data hub

2021

The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and eco-logical processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change).

SELECTION0106 biological sciencesZOOLOGIADatabases Factual05 Environmental Sciences:Zoology and botany: 480 [VDP]Research network01 natural scienceslong‐term studiesBehavioral EcologyData standardsmeta‐data standardsData hubComputingMilieux_MISCELLANEOUSResearch Articlesmeta‐PERSONALITYCLIMATE-CHANGEEcologyEnvironmental resource managementALTERmeta&#8208birds data standards database FAIR data long-term studies meta-data standards research networkPE&RCGedragsecologieChemistryGeographyinternational[SDE]Environmental Sciences1181 Ecology evolutionary biologyPOPULATIONSPlan_S-Compliant_OALife Sciences & Biomedicinelong‐Research ArticleCLUTCH-SIZELong-term studiesEnvironmental Sciences & EcologyAnimal Breeding and GenomicsZoologi15.- Proteger restaurar y promover la utilización sostenible de los ecosistemas terrestres gestionar de manera sostenible los bosques combatir la desertificación y detener y revertir la degradación de la tierra y frenar la pérdida de diversidad biológica010603 evolutionary biologyBirdsDatabase07 Agricultural and Veterinary Sciencesddc:570VDP::Mathematics and natural scienses: 400::Zoology and botany: 480AnimalsFokkerij en Genomica:Zoologiske og botaniske fag: 480 [VDP]BiologyEcology Evolution Behavior and SystematicsMeta-data standardsMetadataFAIR dataScience & Technologylong&#8208business.industry010604 marine biology & hydrobiology06 Biological Sciences15. Life on landdatabase ; meta-data standards ; long-term studies ; birds ; data standards ; FAIR data ; research networkEVOLUTIONTerm (time)13. Climate actionResearch councilVDP::Matematikk og naturvitenskap: 400::Zoologiske og botaniske fag: 480Animal Science and Zoologyterm studiesGREAT TITSbusinessZoologybirds ; data standards ; database ; FAIR data ; long-term studies ; meta-data standards ; research networkRESPONSES
researchProduct

Clutch-size variation in Western Palaearctic secondary hole-nesting passerine birds in relation to nest box design.

2014

Møller, A.P. [et al.]

0106 biological sciencesAvian clutch sizeNest box floor areahabitatNest boxmaterial010603 evolutionary biology01 natural sciences010605 ornithology[ SDV.EE ] Life Sciences [q-bio]/Ecology environmentNestbiology.animalnest box materialNest boxBiologyEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUSGeographic locationParus[SDV.EE]Life Sciences [q-bio]/Ecology environment[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyLatitudebiologyEcologyEcological Modeling[SDV.BA]Life Sciences [q-bio]/Animal biologylongitudeCyanistesFicedulanest box floor arealatitude15. Life on landbiology.organism_classificationBird nestPasserineHabitatChemistrySettore AGR/11 - Entomologia Generale E ApplicataLongitudegeographic locationinternational[SDE.BE]Environmental Sciences/Biodiversity and EcologyHole nesting natural holes nest boxes reaction norm
researchProduct

Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

2011

The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ‘‘radio- hybrid’’ measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features …

Source codeAstronomycomputer.software_genre01 natural sciencesObservatoryAuger experimentRadio detectionSOFTWARES (ANÁLISE)Instrumentationcosmic rays; radio detection; analysis software; detector simulationmedia_commonPhysicsPhysicsDetectoranalysis softwareAstrophysics::Instrumentation and Methods for AstrophysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsComputer hardwareNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAnalysis softwareDetector simulationCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsCosmic Rayradio detectionNuclear physicscosmic raysRAY AIR-SHOWERS0103 physical sciencesDETECTORSInstrumentation (computer programming)010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industrydetector simulationFísicaCosmic ray[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Software frameworkAir showerExperimental High Energy PhysicsEMISSIONbusinesscomputerMONTE-CARLO SIMULATIONS
researchProduct

A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

2012

Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt–L, 2pt+ and 3pt methods, each giving a different measure of selfclustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structu…

HIRES STEREO[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomySMALL-SCALE ANISOTROPYAstrophysics01 natural sciencesAltas energíasCosmic Rays ShowerCosmologyUltra-high-energy cosmic rayAnisotropy010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]BL-LACERTAEAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryRadiación cósmicaFísica nuclearOBJECTSAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysACTIVE GALACTIC NUCLEIActive galactic nucleusmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raysearch for anisotropyultra high energy cosmic raysCosmic Ray[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatorySPECTRUMAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAUniverseGalaxyExperimental High Energy Physicsanisotrpycosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyJournal of Cosmology and Astroparticle Physics
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca).

2010

Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xantho…

0106 biological sciencesLuteinRange (biology)Maternal effectsPopulation DynamicsBreedingXanthophylls01 natural sciencesAntioxidantsTreesSongbirdschemistry.chemical_compoundEgg antioxidantspolycyclic compoundsCarotenoidLepidoptera larvaechemistry.chemical_classification0303 health scienceseducation.field_of_studyPrincipal Component AnalysisbiologyGeographyEcologyfood and beveragesbeta CaroteneEgg YolkZeaxanthinEuropeembryonic structuresFemaleTree phenologyfood.ingredientFood ChainPopulation010603 evolutionary biologyInsectivorous birds03 medical and health sciencesfoodYolkAnimalseducationEcology Evolution Behavior and Systematics030304 developmental biologyorganic chemicalsLuteinFicedula15. Life on landbiology.organism_classificationCarotenoidsbiological factorsDietchemistryXanthophyllPhysiological ecology - Original PaperOecologia
researchProduct

Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

2009

Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ ∝ P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ∼ 10% seasonal modulation and ∼ 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is val…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]: 96.50.sdRadiación CósmicaIMPACTAstronomyExtensive air showerFOS: Physical sciencesCosmic rayAstrophysicsExtensive air showers; UHECR; Atmosphere; Weather01 natural sciencesCOSMIC-RAY CASCADESAugerAtmosphereENERGYObservatory0103 physical sciencesExtensive air showersRECONSTRUCTION96.50.sf010303 astronomy & astrophysicsMolière radiusWeatherInstrumentation and Methods for Astrophysics (astro-ph.IM)96.50.sbPierre Auger ObservatoryPhysics010308 nuclear & particles physicsAtmosphereUHECRDetectorFísicaAstronomy and AstrophysicsPresión AtmosféricaPROFILES[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Longitudinal developmentATMOSFERA (ESTUDO)13. Climate actionExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGClimaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory"[Astroparticle Physics 32…

2010

The Pierre Auger Collaboration... K.B. Barber... J.A. Bellido... R.W. Clay... B.R. Dawson... V.C. Holmes... J. Sorokin... P. Wahrlich... B.J. Whelan... M.G. Winnick... et al.

Astroparticle physicsPhysicsPierre Auger Observatory[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010308 nuclear & particles physicsAstronomyDetectorAstronomyAstronomy and AstrophysicsAstrophysics01 natural sciencesAuger[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy Physics0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstroparticle Physics
researchProduct

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

2014

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xμmax as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xμmax as a useful observable to infer the mass compositi…

AstrofísicaPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstronomyCiencias Físicasmuonshadronic interaction modelsAstrophysics01 natural sciencesHigh Energy Physics - ExperimentAuger//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Air showersProduction depthSURFACE DETECTOR ARRAY[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHigh-Energy Cosmic Rays[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Pierre Auger ObservatoryObservableInstrumentation and Detectors (physics.ins-det)COSMIC-RAYSlongitudinal developmentCore (optical fiber)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayNuclear physicscosmic rays[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesextensive air showers[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasPierre Auger ObservatoryMuon010308 nuclear & particles physics[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Física//purl.org/becyt/ford/1.3 [https]ASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomíaMODELExperimental High Energy PhysicsHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]muonic componentSYSTEM
researchProduct

Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

2008

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7  GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019  eV.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FLUORESCENCE DETECTORAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyOsservatorio Pierre AugerCosmic ray7. Clean energy01 natural sciencesNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]PACS: 95.55.Vj 95.85.Ry 98.70.SaPionRaggi cosmicimuonSEARCH0103 physical sciencesNeutrinoEARTHPartículas ElementalesElectromagnetismo010306 general physicsCosmic raysCharged currentCiencias ExactasPierre Auger ObservatoryPhysicsAIR-SHOWERSRange (particle radiation)Muon[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicspionand other elementary particlesFísicaDETETOREScosmic ray detectorsEnergia ultra altaRadiación cósmicaCOSMIC-RAYSand other elementary particle detectors13. Climate actionHigh Energy Physics::ExperimentNeutrinoSciami atmosferici estesiLepton
researchProduct

Trigger and aperture of the surface detector array of the Pierre Auger Observatory

2010

The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive airshowers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidates howers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 1018 eV, for all zenith angles between 03 and 603, independently of the position of the impact point and of the mass of the primary particl…

Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; ExposurePhysics::Instrumentation and DetectorsAstronomyHigh-Energy Cosmi Ray7. Clean energy01 natural sciencesAugerAcceptance and Trigger Efficiency010303 astronomy & astrophysicsInstrumentationComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)PhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryHigh energyFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AIR SHOWERSApertureInstrumentationAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerFOS: Physical sciencesCosmic rayENERGIACosmic RayUltra high energy cosmic rayExposureOpticsultra high energy cosmic rays Auger Observatory extensive airshowers trigger exposure0103 physical sciencesPARTICLESExtensive air showersSurface DetectorInstrumentation and Methods for Astrophysics (astro-ph.IM)ZenithCiencias ExactasNuclear and High Energy PhysicPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaUltra high energy cosmic raysUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]TriggerAuger ObservatoryExperimental High Energy PhysicsHigh Energy Physics::Experimentbusiness
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct