0000000000182225
AUTHOR
Hirofumi Yamada
Photothermal excitation setup for a modified commercial atomic force microscope
High-resolution imaging in liquids using frequency modulation atomic force microscopy is known to suffer from additional peaks in the resonance spectrum that are unrelated to the cantilever resonance. These unwanted peaks are caused by acoustic modes of the liquid and the setup arising from the indirect oscillation excitation by a piezoelectric transducer. Photothermal excitation has been identified as a suitable method for exciting the cantilever in a direct manner. Here, we present a simple design for implementing photothermal excitation in a modified Multimode scan head from Bruker. Our approach is based on adding a few components only to keep the modifications as simple as possible and …
Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces
The microscopic structure of the polar (000$\overline{1}$) and (0001) surfaces of lithium niobate is investigated by atomic-resolution frequency modulation atomic force microscopy and first-principles calculations. It is found that the surface reconstructs at annealing temperatures sufficiently high to drive off external adsorbates. In particular a ($\sqrt{7}\ifmmode\times\else\texttimes\fi{}\sqrt{7}$)$R$19.1${}^{\ensuremath{\circ}}$ reconstruction is found for the (000$\overline{1}$) surface. Density-functional theory calculations show that---apart from the $(\sqrt{7}\ifmmode\times\else\texttimes\fi{}\sqrt{7})$---a series of adatom-induced surface reconstructions exist that lower the surfa…
Atomic-resolution imaging of the polar (0001¯) surface of LiNbO3in aqueous solution by frequency modulation atomic force microscopy
S. Rode,1 R. Holscher,2 S. Sanna,2 S. Klassen,1 K. Kobayashi,3 H. Yamada,3 W. G. Schmidt,2 and A. Kuhnle1,* 1Institut fur Physikalische Chemie, Fachbereich Chemie, Johannes Gutenberg-Universitat Mainz, Jakob-Welder-Weg 11, 55099 Mainz, Germany 2Lehrstuhl fur Theoretische Physik, Universitat Paderborn, 33095 Paderborn, Germany 3Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan (Received 31 March 2012; revised manuscript received 12 June 2012; published 29 August 2012)
Shell evolution of $N=40$ isotones towards $^{60}$Ca: First spectroscopy of $^{62}$Ti
7 pags., 4 figs., 1 tab.
Modification of a commercial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment.
A key issue for high-resolution frequency-modulation atomic force microscopy imaging in liquids is minimizing the frequency noise, which requires a detailed analysis of the corresponding noise contributions. In this paper, we present a detailed description for modifying a commercial atomic force microscope (Bruker MultiMode V with Nanoscope V controller), aiming at atomic-resolution frequency-modulation imaging in ambient and in liquid environment. Care was taken to maintain the AFMs original stability and ease of operation. The new system builds upon an optimized light source, a new photodiode and an entirely new amplifier. Moreover, we introduce a home-built liquid cell and sample holder …