0000000000188546

AUTHOR

O.yu. Shevchenko

showing 27 related works from this author

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

2012

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong depende…

QuarkNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectHadronFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryCOMPASSSIDISspin asymmetriesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Compass0103 physical sciences010306 general physicsNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Sivers asymmetriesLarge Hadron Colliderta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDeep inelastic scatteringCOMPASS; SIDIS; spin asymmetries; Sivers asymmetriesTransverse planeDistribution functionHigh Energy Physics::ExperimentCOMPASS SIDIS TMD Sivers asymmetryParticle Physics - Experiment
researchProduct

Search for exclusive photoproduction ofZc±(3900) at COMPASS

2015

A search for the exclusive production of the Z(c)(+/-)(3900) hadron by virtual photons has been performed in the channel Z(c)(+/-)(3900). J/Psi pi(+/-). The data cover the range from 7GeV to 19GeV in the centre-of- mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z(c)(+/-)(3900)-> J/Psi pi(+/-)) x sigma(gamma N) -> Z(c)(+/-)(3900) N/sigma gamma N -> J/Psi N 3.7 x10(-3) has been established at the confidence level of90%. (C) 2015 The Authors. Published by Elsevier B.V.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonCompassHadronAnalytical chemistrySigmaHigh Energy Physics::ExperimentProduction (computer science)TetraquarkZc(3900)Range (computer programming)Physics Letters B
researchProduct

Interplay among transversity induced asymmetries in hadron leptoproduction

2015

In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the dif…

QuarkParticle physicsNuclear and High Energy Physicsmedia_common.quotation_subjectHadronNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryHigh Energy Physics - ExperimentNuclear physicsSubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Compass0103 physical sciencesSubatomic Physics010306 general physicsNuclear Experimentmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDeep inelastic scatteringlcsh:QC1-999High Energy Physics - PhenomenologyAngular dependenceHigh Energy Physics::ExperimentNucleonlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

Spin alignment and violation of the OZI rule in exclusive ω and ϕ production in pp collisions

2014

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons…

Particle physicsNuclear and High Energy PhysicsOZI rule testPOLARIZATIONProtonMesonPROTON-PROTON COLLISIONS; LOW-ENERGY PHOTOPRODUCTION; ZWEIG-IIZUKA RULE; MESON PRODUCTION; EXPERIMENTAL TESTS; SELECTION RULE; POLARIZATION; NUCLEON; PIONIsoscalarPROTON-PROTON COLLISIONSMESON PRODUCTIONNuclear TheoryEXPERIMENTAL TESTS530OZI ruleHigh Energy Physics - ExperimentNuclear physicstestPIONInvariant masslcsh:Nuclear and particle physics. Atomic energy. RadioactivityLOW-ENERGY PHOTOPRODUCTIONVector mesonNuclear ExperimentNUCLEONNuclear ExperimentSpin-½PhysicsHigh Energy Physics::PhenomenologySELECTION RULEBaryonOZI ruleZWEIG-IIZUKA RULElcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

2012

First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication …

Nuclear and High Energy PhysicsParticle physicsCOMPASS; SIDIS; two hadron azimuthal asymmetries; transversityHadronNuclear TheoryFOS: Physical sciencesCOMPASSSIDIS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences010306 general physicsNuclear ExperimenttransversityPhysicsLarge Hadron ColliderMuonSpectrometerta114010308 nuclear & particles physicsScatteringtwo hadron azimuthal asymmetrietwo hadron azimuthal asymmetriesHigh Energy Physics::PhenomenologyDeep inelastic scatteringPair productionDistribution functionHigh Energy Physics::ExperimentParticle Physics - ExperimentPhysics Letters B
researchProduct

The spin structure functiong1pof the proton and a test of the Bjorken sum rule

2016

New results for the double spin asymmetry A(1)(p) and the proton longitudinal spin structure function g(1)(p) are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g(1)(p)(x) by about a factor of two in the region x less than or similar to 0.02. A next-to-leading order QCD fit to the g(1) world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, Delta Sigma, ranging from 0.26 to 0.36, and to a…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesHelicityNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentSum rule in quantum mechanics010306 general physicsNucleonSpin-½Physics Letters B
researchProduct

Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target

2017

Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x , the relative virtual-photon energy y and the relative hadron energy z . Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target ( 6 LiD). They cover the kinematic domain in the photon virtuality Q2>1(GeV/c)2 , 0.004 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.

QuarkNuclear and High Energy PhysicsPhotonIsoscalarHadronNuclear TheoryHERMEStarget: isoscalar[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesCOMPASSscaling: BjorkenNuclear physicsPionAstronomi astrofysik och kosmologi[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astronomy Astrophysics and CosmologyPion multiplicitiesNuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentRICHDeep inelastic scattering; Fragmentation functions; Pion multiplicities; Nuclear and High Energy PhysicsPhysicsquark: fragmentation functionMuonpi: multiplicityhep-ex010308 nuclear & particles physicsScatteringmuon: beamhigher-order: 0Fragmentation functionphotonFragmentation functionsDeep inelastic scatteringhadron: energylcsh:QC1-999kinematicsPion multiplicitieHigh Energy Physics::ExperimentParticle Physics - Experimentlcsh:PhysicsDeep inelastic scattering
researchProduct

Leading order determination of the gluon polarisation from DIS events with high-pThadron pairs

2013

We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with Q(2) > 1 (GeV/c)(2) including a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised (LiD)-Li-6 target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x(g) covering the range 0.04 < x(g) < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x(g). Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (sy…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsHadronDeep inelastic scattering01 natural sciencesGluonNuclear physics0103 physical sciencesCOMPASS experimentHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct

Exclusive muoproduction on transversely polarised protons and deuterons

2012

The transverse target spin azimuthal asymmetry A(UT)(sin(phi-phi s)) in hard exclusive production of rho(0) mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E-q, which are related to the orbital angular momentum of quarks in the nucleon. The Q(2), x-B-j and p(T)(2) dependence of A(UT)(sin(phi-phi s)) is presented in a wide kinematic range: 1 (GeV/c)(2) < Q(2) < 10 (GeV/c)(2), 0.003 < xB(j) < 0.3 and 0.05 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for protons or 0.10 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for deuterons. Results for deuteron…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsAngular momentumMuonMeson010308 nuclear & particles physicsmedia_common.quotation_subjectNuclear TheoryParton01 natural sciencesAsymmetryNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonmedia_commonSpin-½Nuclear Physics B
researchProduct

Observation of a New Narrow Axial-Vector Mesona1(1420)

2015

The COMPASS Collaboration at CERN has measured diffractive dissociation of 190  GeV/c pions into the π(-)π(-)π(+) final state using a stationary hydrogen target. A partial-wave analysis (PWA) was performed in bins of 3π mass and four-momentum transfer using the isobar model and the so far largest PWA model consisting of 88 waves. A narrow peak is observed in the f0(980)π channel with spin, parity and C-parity quantum numbers J(PC)=1(++). We present a resonance-model study of a subset of the spin-density matrix selecting 3π states with J(PC)=2(++) and 4(++) decaying into ρ(770)π and with J(PC)=1(++) decaying into f0(980)π. We identify a new a1 meson with mass (1414(-13)(+15))  MeV/c2 and wid…

PhysicsQuantum chromodynamicsMeson010308 nuclear & particles physicsPartial wave analysisGeneral Physics and AstronomyParity (physics)Quantum number01 natural sciencesNuclear physicsPion0103 physical sciencesIsobarHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPseudovectorPhysical Review Letters
researchProduct

The COMPASS Setup for Physics with Hadron Beams

2015

The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…

Particle physicsCalorimetry; Data acquisition and reconstruction; Fixed target experiment for hadron spectroscopy; Front-end electronics; Micro Pattern detectors and Drift chambers; Monte-Carlo simulation; RICH; Instrumentation; Nuclear and High Energy PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesMonte-Carlo simulation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Calorimetryacquisition and reconstruction01 natural sciences7. Clean energyMicro Pattern detectors and Drift chambersHigh Energy Physics - ExperimentNuclear physicsMomentumHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopy0103 physical sciencesDetectors and Experimental Techniques010306 general physicsRICHInstrumentationFixed target experiment for hadron spectroscopyPhysicsDataLarge Hadron Collider010308 nuclear & particles physicsMicroMegas detectorFront-end electronicsInstrumentation and Detectors (physics.ins-det)Micro Pattern detectorsand Drift chambersData acquisition and reconstructionGas electron multiplierPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)Front-end electronicMicro Pattern detectors and Drift chamber
researchProduct

Spin asymmetry A1d and the spin-dependent structure function g1d of the deuteron at low values of x and Q2

2007

Abstract We present a precise measurement of the deuteron longitudinal spin asymmetry A 1 d and of the deuteron spin-dependent structure function g 1 d at Q 2 1 ( GeV / c ) 2 and 4 × 10 −5 x 2.5 × 10 −2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A 1 d and g 1 d are found to be consistent with zero in the whole range of x.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Large Hadron Collider010308 nuclear & particles physicsmedia_common.quotation_subjectStructure functionZero (complex analysis)01 natural sciencesAsymmetryNuclear physicsDeuterium0103 physical sciencesCOMPASS experiment010306 general physicsSpin-½media_commonPhysics Letters B
researchProduct

The spin-dependent structure function of the proton g1p and a test of the Bjorken sum rule

2010

Abstract The inclusive double-spin asymmetry, A 1 p , has been measured at COMPASS in deep-inelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q 2 > 1 ( GeV / c ) 2 , 0.004 x 0.7 and improve the statistical precision of g 1 p ( x ) by a factor of two in the region x 0.02 . The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g 1 NS ( x , Q 2 ) . The isovector quark density, Δ q 3 ( x , Q 2 ) , is evaluated from a NLO QCD fit of g 1 NS . The first moment of Δ q 3 is in good agreement with the value predicted by the Bjorken su…

Quantum chromodynamicsPhysicsCoupling constantNuclear and High Energy PhysicsParticle physicsMuonIsovectorProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesNuclear physics0103 physical sciencesSum rule in quantum mechanics010306 general physicsSpin-½Physics Letters B
researchProduct

Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high $p_T$

2015

We measured the longitudinal double spin asymmetries $A_{LL}$ for single hadron muo-production off protons and deuterons at photon virtuality $Q^2$ < 1(GeV/$\it c$)$^2$ for transverse hadron momenta $p_T$ in the range 0.7 GeV/$\it c$ to 4 GeV/$\it c$ . They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/$\it c$ or 200 GeV/$\it c$ impinging on polarised $\mathrm{{}^6LiD}$ or $\mathrm{NH_3}$ targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation $\Delta G$ inside the nucleon in the range of the nucleon momentum fraction carried by gluons $0.05 < x_g < 0.2$. We measured the longi…

Nuclear and High Energy PhysicsParticle physicsPhotonHigh pTHadronNuclear TheoryCOMPASS; Deep inelastic scattering; Double spin asymmetry; High pT; δG; Nuclear and High Energy PhysicsFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Double spin asymmetryLambdaCOMPASS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesδG010306 general physicsNuclear ExperimentPhysicsMuon010308 nuclear & particles physicsDeep inelastic scatteringlcsh:QC1-999GluonHigh Energy Physics - PhenomenologyDeuteriumHigh Energy Physics::ExperimentNucleonlcsh:PhysicsParticle Physics - ExperimentDeep inelastic scattering
researchProduct

Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering

2009

We present a LO evaluation of helicity densities of valence, \Delta u_v+\Delta d_v, non-strange sea, \Delta\bar{u}+\Delta\bar{d}, and strange quarks, \Delta s (assumed to be equal to \Delta\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\pi+}_{1,d}, A^{\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004<x<0.3. Both non-strange densities are found to be in a good agreement with previous measurements. The distribution of \Delta s(x) is compatible wit…

Strange quarkPOLARIZED TARGETNuclear TheoryVALENCE QUARK DISTRIBUTION; PARTON DISTRIBUTIONS; POLARIZED TARGET; NUCLEON; PROTON; DISPolarised DIS and SIDISPROTON01 natural sciencesCOMPASSParton distribution functionHigh Energy Physics - ExperimentCOMPASS; double-spin asymmetry; helicity density; parton distribution function; flavour sep- aration analysis; polarised DIS and SIDIS reactions; charged kaon asymmetrypolarised DIS and SIDIS reactionHigh Energy Physics - Experiment (hep-ex)Helicity densityVALENCE QUARK DISTRIBUTIONNUCLEONNuclear Experimentmedia_commonQuantum chromodynamicsPhysicsFlavour separation analysisHelicityCharged kaon asymmetryNucleondouble-spin asymmetryParticle Physics - Experimentcharged kaon asymmetryParticle physicsNuclear and High Energy Physicsreactionsflavour sep- aration analysismedia_common.quotation_subjectFOS: Physical sciencesparton distribution functionAsymmetryNuclear physics0103 physical sciencesflavour sep- aration analysiPolarised DIS and SIDIS reactions010306 general physicsfunctionDISMuonValence (chemistry)010308 nuclear & particles physicsScatteringParton distributionPARTON DISTRIBUTIONSHigh Energy Physics::Experimenthelicity densityDouble-spin asymmetry
researchProduct

The Polarised Valence Quark Distribution from semi-inclusive DIS

2007

The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of opposite charge has been measured by the COMPASS experiment at CERN. The data were collected in the years 2002-2004 using a 160 GeV polarised muon beam scattered off a large polarised ^6LiD target and cover the range 0.006 &lt; x &lt; 0.7 and 1 &lt; Q^2 &lt; 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an evaluation of the first moment of Delta u_v + Delta d_v which is found to be equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously measured …

QuarkNuclear and High Energy PhysicsParticle physicsmagnetic spectrometer: COMPASSStructure functionsmedia_common.quotation_subjectHadronpolarization: longitudinalFOS: Physical sciencespolarized targetcross section: ratioDeep inelastic scattering; Structure functionsmuon deuteron: deep inelastic scattering01 natural sciencesAsymmetryx-dependenceHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)charged particle: multiple productionnegative particle: electroproductionExperiment-HEP13.88.+e0103 physical sciencesstructure function: moment010306 general physicsNuclear Experimentmedia_commonPhysicsQuantum chromodynamicsMuonValence (chemistry)010308 nuclear & particles physicsHigh Energy Physics::Phenomenologycross section: differenceCERN SPSDeep inelastic scatteringpositive particle: electroproductionDeuteriumquark: valenceHigh Energy Physics::Experimentmuon: polarized beamquark: polarization140-180 GeVspin: asymmetry13.60.HbDeep inelastic scatteringParticle Physics - Experimentexperimental results
researchProduct

Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS

2008

The measurements of the Collins and Sivers asymmetries of identified hadrons produced in deep-inelastic scattering of 160 GeV/c muons on a transversely polarised 6LiD target at COMPASS are presented. The results for charged pions and charged and neutral kaons correspond to all data available, which were collected from 2002 to 2004. For all final state particles both the Collins and Sivers asymmetries turn out to be small, compatible with zero within the statistical errors, in line with the previously published results for not identified charged hadrons, and with the expected cancellation between the u- and d-quark contributions.

QuarkNuclear and High Energy PhysicsParticle physicsSivers asymmetryHadronNuclear TheoryFOS: Physical sciences01 natural sciencesCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionIdentifiedCompass0103 physical sciencesTransverse spin effects; Deuteron; Collins asymmetry; Sivers asymmetry; COMPASSDeuteronTransverse spin effect010306 general physicsNuclear ExperimentPhysicsMuon010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyTransverse single-spin asymmetryTransverse spin effectsCollins asymmetryhadronsDeuteriumTransversityHigh Energy Physics::Experiment
researchProduct

Erratum to: Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/ $$c$$ c

2015

Author(s): Adolph, C; Alekseev, MG; Alexakhin, VY; Alexandrov, Y; Alexeev, GD; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, SU; Cicuttin, A; Crespo, ML; Dalla Torre, S; Dasgupta, SS; Dasgupta, S; Denisov, OY; Donskov, SV; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, PD; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger Jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedri…

Nuclear physicsPhysicsMuonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physics0103 physical sciencesHadronTransverse momentum010306 general physicsDeep inelastic scattering53001 natural sciencesEngineering (miscellaneous)The European Physical Journal C
researchProduct

The COMPASS experiment at CERN

2007

The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…

Nuclear and High Energy Physicsstraw tube detectorPhysics::Instrumentation and DetectorsProject commissioningFOS: Physical sciencesfixed-target experimentRICH detectorhadron structureHigh Energy Physics - ExperimenttargetMWPCNuclear physicsHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopyCOMPASS experimentscintillating fibre detectorNuclear Experimentsilicon microstrip detectorsInstrumentationSilicon microstrip detectorsPhysicsLarge Hadron ColliderStructure functionMicroMegas detectorfront-end electronicsDAQmicromegas detectordrift chamberPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentpolarisedGEM detectorcalorimetryParticle Physics - Experimentpolarised DISNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The Deuteron Spin-dependent Structure Function g1(d) and its First Moment

2007

We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.

Nuclear and High Energy PhysicsParticle physicsg(1)FOS: Physical sciencesAbsolute valuespinspin structure function g101 natural sciencesCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)polarised deep inelastic scatteringdeep inelastic scatteringstructure function0103 physical sciencesCOMPASS experimentA(1)polarised deep inelastic scattering; COMPASS; spin structure function g1; QCD analysisSinglet state010306 general physicsSpin-½Quantum chromodynamicsPhysics010308 nuclear & particles physicsDeep inelastic scatteringGluonQCD analysisDistribution functionHigh Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

2007

New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.

QuarkdeuteronNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSivers asymmetryHadrontransversity and Sivers functionFOS: Physical sciencesCOMPASS01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)nucleon structure; transverse spin and transverse momentum; transversity and Sivers functions; deuteron; COMPASS experimentCompass0103 physical sciencesCOMPASS experimentCollins010306 general physicsNuclear ExperimentCOMPASS experimenttransversityPhysicsLarge Hadron ColliderMuonSpectrometer010308 nuclear & particles physicsScatteringtransversity and Sivers functionsnucleon structureHigh Energy Physics::Experimenttransverse spin and transverse momentumasymmetryParticle Physics - Experimenttransverse single-spin asymmetry
researchProduct

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

2015

Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

High energyParticle physicsNuclear and High Energy PhysicsProtonNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]spin01 natural sciencesSIDIS530SINGLE SPIN ASYMMETRIESHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)TMD PDF and FFPionNuclear and High Energy Physics; TMD PDF and FF; SIDIS; spinRATIO0103 physical sciencesDISTRIBUTIONSSCATTERING[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsNuclear ExperimentNuclear and High Energy PhysicPhysicsMuon010308 nuclear & particles physicsScatteringlcsh:QC1-999ddc:High Energy Physics::ExperimentParticle Physics - Experimentlcsh:Physics
researchProduct

Measurement of the Spin Structure of the Deuteron in the DIS Region

2005

We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 &lt; Q^2 &lt; 100 GeV^2 and 0.004&lt; x &lt;0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 &lt; x &lt; 0.03.

Nuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectFOS: Physical sciencesSpin structure01 natural sciencesAsymmetryCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)deep inelastic scatteringstructure function0103 physical sciencesCOMPASS experiment010306 general physicsNuclear Experimentmedia_commonSpin-½PhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsDeep inelastic scatteringstructure function; COMPASS; DEEP INELASTIC-SCATTERINGstructure functionsDEEP INELASTIC-SCATTERINGHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)
researchProduct

Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

2014

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

Particle physicsNuclear and High Energy PhysicsTMD SIDIS PDFHadronFOS: Physical sciencesSIVERS ASYMMETRIESMUON PROTON-SCATTERINGCOLLINSSIDISPDF01 natural sciences530High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)LEPTOPRODUCTIONDEPENDENCE0103 physical sciencesDISTRIBUTIONSlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentPhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsTMDELECTROPRODUCTIONDeep inelastic scatteringAzimuthAmplitudeMUON PROTON-SCATTERING; SIVERS ASYMMETRIES; SPIN ASYMMETRIES; DISTRIBUTIONS; ELECTROPRODUCTION; LEPTOPRODUCTION; DEPENDENCE; COLLINSlcsh:QC770-798High Energy Physics::ExperimentNucleonSPIN ASYMMETRIESParticle Physics - ExperimentBeam (structure)
researchProduct

Measurement of the Collins and Sivers asymmetries on transversely polarised protons

2010

The Collins and Sivers asymmetries for charged hadrons produced in deeply inelastic scattering on transversely polarised protons have been extracted from the data collected in 2007 with the CERN SPS muon beam tuned at 160 GeV/c. At large values of the Bjorken x variable non-zero Collins asymmetries are observed both for positive and negative hadrons while the Sivers asymmetry for positive hadrons is slightly positive over almost all the measured x range. These results nicely support the present theoretical interpretation of these asymmetries, in terms of leading-twist quark distribution and fragmentation functions.

QuarkNuclear and High Energy PhysicsParticle physicsProtonmedia_common.quotation_subjectSivers asymmetryNuclear TheoryHadronFOS: Physical sciencesInelastic scattering01 natural sciencesAsymmetryCOMPASSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesTransverse spin effectNuclear Experiment010306 general physicsmedia_commonPhysicsMuonLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTransverse spin effectsCollins asymmetryPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentTransverse spin effects; Proton; Collins asymmetry; Sivers asymmetry; COMPASSProtonParticle Physics - Experiment
researchProduct

Corrigendum to “Odd and even partial waves of ηπ− and η′π− in π−p → η(′)π−p at 191 GeV/c” [Phys. Lett. B 740 (2015) 303–311]

2020

Abstract In Fig. 5 on p. 311 of our Phys. Lett. B 740 (2015) 303 an adjustment by 180 ∘ is required for the phases with respect to the L = 2 , M = 1 wave, of the following waves: L = 1 , 3 , 5 with M = 1 , and L = 2 with M = 2 . After this correction (Fig. 5 (corrected) below), the extracted partial waves describe the angular distribution of the η ( ′ ) in the Gottfried-Jackson (GJ) frame, using Eq. (4) with implicit Condon-Shortley phase convention. The other results of our paper are not affected. The right-handed GJ coordinate system was defined by the z-axis pointing in the direction of the beam in the η ( ′ ) π − center-of-mass system and the y-axis pointing in the direction of p recoil…

PhysicsNuclear and High Energy PhysicsAngular distributionRecoilCoordinate systemPhase (waves)Atomic physicsBeam (structure)lcsh:Physicslcsh:QC1-999Physics Letters B
researchProduct

Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

2006

Abstract We present a determination of the gluon polarization Δ G / G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q 2 1 ( GeV / c ) 2 , with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6 LiD target. The helicity asymmetry for the selected events is 〈 A ∥ / D 〉 = 0.002 ± 0.019 ( stat ) ± 0.003 ( syst ) . From this value, we obtain in a leading-order QCD analysis Δ G / G = 0.024 ± 0.089 ( stat ) ± 0.057 ( syst ) at x g = 0.095 and μ 2 ≃ 3 ( GeV / c ) 2 .

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsMuon010308 nuclear & particles physicsHadronDeep inelastic scattering01 natural sciencesHelicityGluonNuclear physics0103 physical sciencesCOMPASS experimentHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonPhysics Letters B
researchProduct