0000000000194815
AUTHOR
Pieter Stroeve
Protein transport through gold-coated, charged nanopores: Effects of applied voltage
The flux of bovine serum albumin and bovine hemoglobin through charged nanopores inside polymeric membranes is analysed as a function of the applied voltage to the nanopore surface, the solution ionic strength and pH. The electrostatic interaction of the protein with the nanopore surface gives low transport rates except at the protein isoelectric point and the minimum of the effective, voltage-induced nanopore charge. This electrostatic sieving effect allows for the separation of proteins with similar molecular weights.
Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles
Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration
This article focuses on the study of the release rate in a family of modified silica mesoporous supports. A collection of solids containing ethyl, butyl, hexyl, octyl, decyl, octadecyl, docosyl, and triacontyl groups anchored on the pore outlets of mesoporous MCM-41 has been prepared and characterized. Controlled release from pore voids has been studied through the delivery of the dye complex tris(2,2¿-bipyridyl)ruthenium(II). Delivery rates were found to be dependent on the alkyl chain length anchored on the pore outlets of the mesoporous scaffolding. Moreover, release rates follow a Higuchi diffusion model, and Higuchi constants for the different hybrid solids have been calculated. A decr…
Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme
Core-shell nanoparticles comprised of Fe3O4 cores and a mesoporous silica shell with an average expanded pore size of 6.07 nm and coated with a poly(N-isopropylacrylamide) (PNIPAM) layer (CS MSNs EP PNIPAM) were prepared and characterized. The nanoparticles was loaded with (Ru(bipy)3 2+) dye or an antibacterial enzyme, lysozyme, to obtain CS MSNs EP PNIPAM Ru(bipy)3 2+ and CS MSNs EP PNIPAM Lys, respectively. The lysozyme loading was determined to be 160 mg/g of nanoparticle. It was seen that Ru(bipy)3 2+ and lysozyme release was minimal at a room temperature of 25 ºC while at physiological temperature (37 º C), abrupt release was observed. The applicability of the CS MSNs EP PNIPAM Lys was…
Protein diffusion through charged nanopores with different radii at low ionic strength
[EN] The diffusion of two similar molecular weight proteins, bovine serum albumin (BSA) and bovine haemoglobin (BHb), through nanoporous charged membranes with a wide range of pore radii is studied at low ionic strength. The effects of the solution pH and the membrane pore diameter on the pore permeability allow quantifying the electrostatic interaction between the chargedpore and the protein. Because of the large screening Debye length, both surface and bulk diffusion occur simultaneously. By increasing the pore diameter, the permeability tends to the bulk self-diffusion coefficient for each protein. By decreasing the pore diameter, the charges on the pore surface electrostatically hinder …
Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications
Single-track, asymmetric nanopores can currently be functionalised with a spatially inhomogeneous distribution of fixed charges and a variety of pore tip shapes. Optimising the asymmetric nanopore characteristics is crucial for practical applications in nanofluidics. We have addressed here this question for three cases based on different input/output chemical and electrical signals: (i) ion pumping up a concentration gradient by means of a periodic, time-dependent bias potential, (ii) information processing with a single nanopore acting as the nanofluidic diode of a logic gate, and (iii) electrical energy harvesting using a nanopore that separates two solutions of different salt concentrati…
Convection, diffusion and reaction in a surface-based biosensor: Modeling of cooperativity and binding site competition on the surface and in the hydrogel
We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Sub…
Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses
[EN] We have arranged two multipore membranes with conical nanopores in a three-compartment electrochemical cell. The membranes act as tunable nanofluidic diodes whose functionality is entirely based on the pH-reversed ion current rectification and does not require specific surface functionalizations. This electrochemical arrangement can display different electrical behaviors (quasi-linear ohmic response and inward/outward rectifications) as a function of the electrolyte concentration in the external solutions and the applied voltage at the pore tips. The multifunctional response permits to implement different logical responses including NOR and INHIBIT functions.