6533b82ffe1ef96bd1295289

RESEARCH PRODUCT

Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme

José Ramón MurguíaRamón Martínez-máñezPedro AmorósPieter StroeveErick YuErick YuMaría D. MarcosIrene GalianaFélix SancenónElena Aznar

subject

INGENIERIA DE LA CONSTRUCCIONSilicon dioxideAcrylic ResinsBiomedical EngineeringNanoparticleBioengineeringchemistry.chemical_compoundPNIPAMQUIMICA ORGANICAColloid and Surface ChemistryBacillus cereusBIOQUIMICA Y BIOLOGIA MOLECULARNanotechnologyFerrous CompoundsPhysical and Theoretical ChemistryChemical PhysicsChromatographybiologyProtein deliveryQUIMICA INORGANICATemperatureTriggered releaseSurfaces and InterfacesGeneral MedicineChemical EngineeringMesoporous silicaSilicon Dioxidebiology.organism_classificationAnti-Bacterial AgentsMicrococcus luteuschemistryDrug deliveryPoly(N-isopropylacrylamide)NanoparticlesMuramidaseLysozymePore expansionMesoporous materialMicrococcus luteusPorosityMesoporous silicaPhysical Chemistry (incl. Structural)BiotechnologyNuclear chemistry

description

Core-shell nanoparticles comprised of Fe3O4 cores and a mesoporous silica shell with an average expanded pore size of 6.07 nm and coated with a poly(N-isopropylacrylamide) (PNIPAM) layer (CS MSNs EP PNIPAM) were prepared and characterized. The nanoparticles was loaded with (Ru(bipy)3 2+) dye or an antibacterial enzyme, lysozyme, to obtain CS MSNs EP PNIPAM Ru(bipy)3 2+ and CS MSNs EP PNIPAM Lys, respectively. The lysozyme loading was determined to be 160 mg/g of nanoparticle. It was seen that Ru(bipy)3 2+ and lysozyme release was minimal at a room temperature of 25 ºC while at physiological temperature (37 º C), abrupt release was observed. The applicability of the CS MSNs EP PNIPAM Lys was further tested with two Gram-positive bacteria samples, Bacillus cereus and Micrococcus luteus. At physiological temperature, the nanoparticles were shown to reduce bacterial growth, indicating a successful release of lysozyme from the nanoparticles. This nanoparticle system shows potential as a nanocarrier for the loading of similarly sized proteins or other species as a drug delivery platform.

https://doi.org/10.1016/j.colsurfb.2015.06.048