0000000000202467

AUTHOR

P. Montini

showing 11 related works from this author

Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

2011

Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the obser…

Point spread functionNuclear and High Energy PhysicsCosmic Rays Gamma Astronomy Extended Air ShowersAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodCosmic rayAstrophysics01 natural sciencesStandard deviationPhysics::GeophysicsRaggi cosmiciSettore FIS/05 - Astronomia E Astrofisicageomagnetic field0103 physical sciences010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsOmbra della lunaApparati di sciameDetectorSettore FIS/01 - Fisica SperimentaleMoon shadowAstronomyCosmic rayMagnetic fieldEarth's magnetic fieldAir shower13. Climate actionPhysics::Space Physics
researchProduct

Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment

2019

The hadronic interaction of cosmic rays with solar atmosphere can produce high energy gamma-rays. The gamma-ray luminosity is correlated both with the flux of primary cosmic rays and the intensity of the solar magnetic field. The gamma-rays below 200 GeV have been observed by Fermi without any evident energy cutoff. The bright gamma-ray flux above 100 GeV has been detected only during solar minimum. The only available data in the TeV range come from the HAWC observations, however, outside the solar minimum. The ARGO-YBJ data set has been used to search for sub-TeV/TeV gamma-rays from the Sun during the solar minimum from 2008 to 2010, the same time period covered by the Fermi data. A suitab…

Solar minimumSun: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayastroparticle physics; cosmic rays; gamma rays: general; Sun: general7. Clean energy01 natural sciencesAtmospherecosmic rays0103 physical sciencesgeneral [Sun]010303 astronomy & astrophysicsArgocosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysics010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleGamma rayAstronomyastroparticle physicAstronomy and Astrophysicsgamma rays: general13. Climate actionSpace and Planetary Scienceastroparticle physicsHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenageneral [gamma rays]
researchProduct

Long-term monitoring of the TeV emission from Mrk 421 with the ARGO-YBJ experiment

2011

ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-r…

media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaOggetti di tipo BL LacertaeFOS: Physical sciencesFluxAstrophysics01 natural sciences7. Clean energyindividual (Markarian 421) [BL Lacertae objects]Spectral lineGamma-rays Markarian 421 BL Lacertae Resistive Plate Chamberslaw.inventionlaw0103 physical sciencesRadiative transfer010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsMarkarian 421Settore FIS/01 - Fisica SperimentaleAstronomy and Astrophysicsgeneral [gamma ray]Synchrotron3. Good healthAir shower13. Climate actionSpace and Planetary ScienceDuty cycleSkyRaggi gammaSpectral energy distributionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

2021

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]
researchProduct

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

2021

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yieldNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

2010

In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-1…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsBL Lacertae objectSettore FIS/05 - Astronomia E AstrofisicaExtended Air showersSettore FIS/05 - Astronomia e Astrofisicageneral" ["gamma rays]BlazarBL Lacertae objects; Markarian 421; gamma rays; Extended Air showersCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSpectral indexindividual (Markarian 421)" ["BL Lacertae objects]Markarian 421Settore FIS/01 - Fisica SperimentaleGamma rayindividual (Markarian 421) - gamma rays: observations [BL Lacertae objects]Astronomy and AstrophysicsAir showerCrab NebulaSpace and Planetary Sciencegamma rayIntergalactic travelAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

2015

The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzi…

Nuclear and High Energy PhysicsPARTICLE-ACCELERATIONPhysics and Astronomy (miscellaneous)ProtonAstrophysics::High Energy Astrophysical PhenomenaSHELLFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Observatory0103 physical sciencesUltra-high-energy cosmic ray010306 general physicsCosmic-ray observatoryDETECTORNuclear and High Energy PhysicPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSSpectral index010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsSpectral densityAir shower13. Climate actionSUPERNOVA REMNANTHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Galactic Cosmic-Ray Anisotropy in the Northern hemisphere from the ARGO-YBJ Experiment during 2008-2012

2018

This paper reports on the observation of the sidereal large-scale anisotropy of cosmic rays using data collected by the ARGO-YBJ experiment over 5 years (2008-2012). This analysis extends previous work limited to the period from 2008 January to 2009 December, near the minimum of solar activity between cycles 23 and 24. With the new data sample, the period of solar cycle 24 from near minimum to maximum is investigated. A new method is used to improve the energy reconstruction, allowing us to cover a much wider energy range, from 4 to 520 TeV. Below 100 TeV, the anisotropy is dominated by two wide regions, the so-called “tail-in” and “loss-cone” features. At higher energies, a dramatic change…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray01 natural sciencescosmic rays0103 physical sciencesAnisotropy010303 astronomy & astrophysicsArgocosmic rayAstroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleNorthern HemisphereAstronomyastroparticle physicAstronomy and Astrophysicsastroparticle physics cosmic ray anysotropy argo-ybjAstronomy and Astrophysicastroparticle physics; cosmic rays; Astronomy and Astrophysics; Space and Planetary Scienceastroparticle physics13. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The analog Resistive Plate Chamber detector of the ARGO-YBJ experiment

2015

The ARGO-YBJ experiment has been in stable data taking from November 2007 till February 2013 at the YangBaJing Cosmic Ray Observatory (4300 m a.s.l.). The detector consists of a single layer of Resistive Plate Chambers (RPCs) (6700 m2) operated in streamer mode. The signal pick-up is obtained by means of strips facing one side of the gas volume. The digital readout of the signals, while allows a high space–time resolution in the shower front reconstruction, limits the measurable energy to a few hundred TeV. In order to fully investigate the 1–10 PeV region, an analog readout has been implemented by instrumenting each RPC with two large size electrodes facing the other side of the gas volume…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower detectionFOS: Physical sciencesCosmic raySTRIPSCalorimetrySignallaw.inventionOpticsObservatorylawAir shower detection RPC detector CalorimetryCosmic-ray observatoryphysics.ins-detInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsResistive touchscreenbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Core (optical fiber)RPC detectorbusinessAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ

2017

A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities, have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e. accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decr…

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)High Energy Astrophysical Phenomena (astro-ph.HE)Field (physics)Physics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayElectron01 natural sciencesComputational physicsAir showerElectric field0103 physical sciencesThunderstorm010306 general physicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsEvent (particle physics)Astrophysics - Earth and Planetary Astrophysics
researchProduct

TeV gamma-ray survey of the Northern sky using the ARGO-YBJ detector

2013

The ARGO-YBJ detector is an extensive air shower array that has been used to monitor the northern $\gamma$-ray sky at energies above 0.3 TeV from 2007 November to 2013 January. In this paper, we present the results of a sky survey in the declination band from $-10^{\circ}$ to $70^{\circ}$, using data recorded over the past five years. With an integrated sensitivity ranging from 0.24 to $\sim$1 Crab units depending on the declination, six sources have been detected with a statistical significance greater than 5 standard deviations. Several excesses are also reported as potential $\gamma$-ray emitters. The features of each source are presented and discussed. Additionally, $95\%$ confidence le…

Astrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectFOS: Physical sciencesFluxField of viewAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGamma rays: general – surveys01 natural sciencesDeclination0103 physical sciencesAbsorption (logic)010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomy and Astrophysicsgeneral – su [gamma rays]Air showerExtragalactic background light13. Climate actionSpace and Planetary ScienceSkygeneral – surveys [Gamma rays]Astrophysics - High Energy Astrophysical Phenomena
researchProduct