0000000000204754

AUTHOR

Thorben Link

showing 19 related works from this author

Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation

2013

Polymeric silica is formed from ortho-silicate during a sol–gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded i…

ScaffoldCell growthChemistryCelltechnology industry and agricultureBiomedical EngineeringMedicine (miscellaneous)macromolecular substancescomplex mixturesBone morphogenetic protein 2BiomaterialsCollagen type I alpha 1medicine.anatomical_structureBone cellSelf-healing hydrogelsmedicineBiophysicsSaos-2 cellsBiomedical engineeringJournal of Tissue Engineering and Regenerative Medicine
researchProduct

ATP distribution and localization of mitochondria in Suberites domuncula (Olivi 1792) tissue

2011

SUMMARY The metabolic energy state of sponge tissue in vivo is largely unknown. Quantitative bioluminescence-based imaging was used to analyze the ATP distribution of Suberites domuncula (Olivi 1792) tissue, in relation to differences between the cortex and the medulla. This method provides a quantitative picture of the ATP distribution closely reflecting the in vivo situation. The obtained data suggest that the highest ATP content occurs around channels in the sponge medulla. HPLC reverse-phase C-18, used for measurement of ATP content, established a value of 1.62 μmol ATP g–1 dry mass in sponge medulla, as opposed to 0.04 μmol ATP g–1 dry mass in the cortex, thus indicating a specific and…

PhysiologyProtein subunitIn situ hybridizationAquatic ScienceBiologyMitochondrionAdenosine TriphosphateImage Processing Computer-AssistedAnimalsMolecular BiologyChromatography High Pressure LiquidIn Situ HybridizationEcology Evolution Behavior and SystematicsMedullaArginine KinaseArginine kinaseATP distribution; mitochondria; imaging bioluminescence; HPLC; Porifera; Suberites domunculabiology.organism_classificationImmunohistochemistryMitochondriaSuberites domunculaSpongeBiochemistryOrgan SpecificityInsect Sciencebiology.proteinAnimal Science and ZoologyMitochondrion localizationEnergy MetabolismSuberitesJournal of Experimental Biology
researchProduct

Bioengineering of the silica-polymerizing enzyme silicatein-alpha for a targeted application to hydroxyapatite.

2009

Since its discovery, numerous biotechnological approaches have aimed to explore the silica-polymerizing catalytic activity of the enzyme silicatein. In vivo, silicatein catalyzes polymerization of amorphous silica nanospheres from soluble precursors. In vitro, it directs the formation of nanostructured biosilica. This is of interest for various applications that strive to benefit from both the advantages of the biological system (i.e., silica synthesis under physiological conditions) and the cell mineralization-stimulating effect of biosilica. However, so far immobilization of silicatein has been hampered by the complex multistep procedure required. In addition, the chemical surface modific…

Materials scienceSilicon dioxidePolymersSus scrofaBiomedical EngineeringNanofibersGlutamic AcidBioengineeringPlasma protein bindingBiochemistryBiomaterialschemistry.chemical_compoundTissue engineeringAnimalsBone regenerationMolecular Biologychemistry.chemical_classificationbiologyGeneral Medicinebiology.organism_classificationEnzymes ImmobilizedSilicon DioxideCathepsinsEnzymeDurapatitechemistryBiochemistryNanofiberCrystallizationSuberitesBiotechnologyBiomedical engineeringBiomineralizationSuberitesProtein BindingActa biomaterialia
researchProduct

Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component

2014

Abstract Background Laccases are copper-containing enzymes that catalyze the oxidation of a wide variety of phenolic substrates. Methods We describe the first poriferan laccase from the marine demosponge Suberites domuncula. Results This enzyme comprises three characteristic multicopper oxidase homologous domains. Immunohistological studies revealed that the highest expression of the laccase is in the surface zone of the animals. The expression level of the laccase gene is strongly upregulated after exposure of the animals to the bacterial endotoxin lipopolysaccharide. To allow the binding of the recombinant enzyme to ferromagnetic nanoparticles, a recombinant laccase was prepared which con…

LipopolysaccharidesMolecular Sequence DataBiophysicsMulticopper oxidaseFerric CompoundsLigninBiochemistryMichaelis–Menten kineticsGene Expression Regulation EnzymologicSubstrate Specificitychemistry.chemical_compoundEscherichia coliAnimalsLigninAmino Acid SequenceMolecular BiologyPhylogenyLaccasechemistry.chemical_classificationDose-Response Relationship DrugSequence Homology Amino AcidbiologyReverse Transcriptase Polymerase Chain ReactionChemistryLaccaseHydrazonesSubstrate (chemistry)biology.organism_classificationRecombinant ProteinsAnti-Bacterial AgentsUp-RegulationSuberites domunculaKineticsEnzymeBiochemistryBiocatalysisNanoparticlesSuberitesOxidation-ReductionIron oxide nanoparticlesBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

A new polyphosphate calcium material with morphogenetic activity

2015

Abstract Polyphosphate [polyP] has been proven to elicit morphogenetic activity on bone cells. By applying mild reaction conditions, a Ca-polyP material that displays a hardness of ≈1.3 GPa has been fabricated. The Ca-polyP granules are prone to hydrolytic degradation during in vitro incubation of the cells, suggesting that this property is associated with the observed bioactivity.

Reaction conditionsMaterials scienceMechanical EngineeringPolyphosphatechemistry.chemical_elementpathological conditions signs and symptomsCalciumIn vitro incubationCondensed Matter PhysicsRegenerative medicinedigestive system diseaseschemistry.chemical_compoundsurgical procedures operativechemistryBiochemistryTissue engineeringMechanics of MaterialsBone cellotorhinolaryngologic diseasesGeneral Materials ScienceneoplasmsSaos-2 cellsMaterials Letters
researchProduct

Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the os…

2014

Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(e-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicate…

ScaffoldBiocompatibilityPolyestersNanofibersOsteoclastsNanotechnologyBiocompatible MaterialsApplied Microbiology and BiotechnologyMineralization (biology)chemistry.chemical_compoundCalcification PhysiologicOsteoclastCell Line TumormedicineHumansNanotechnologySaos-2 cellsCell ProliferationTissue ScaffoldsChemistrytechnology industry and agricultureGeneral MedicineSilicon DioxideElectrospinning3. Good healthTetraethyl orthosilicatemedicine.anatomical_structureChemical engineeringNanofiberMolecular MedicineBiotechnologyBiotechnology journal
researchProduct

Dissection of the structure-forming activity from the structure-guiding activity of silicatein: a biomimetic molecular approach to print optical fibe…

2020

Silicateins, a group of proteins forming the proteinaceous axial filaments of the inorganic biosilica spicules of the siliceous sponges, are unique in their dual function to exhibit both structure-guiding (providing the structural platform for the biosilica product) and structure-forming activities (enzymatic function: biosilica synthesis from ortho-silicate). The primary translation product of the silicatein gene comprises a signal peptide, a pro-peptide and, separated by an autocatalytic cleavage site glutamine/aspartic acid [Q/D], the sequence of the mature silicatein protein. In order to dissect the biocatalytic, structure-forming activity of silicatein from its structure-guiding functi…

Signal peptidechemistry.chemical_classificationbiologyBiomedical EngineeringWild typeSubstrate (chemistry)Sequence (biology)General ChemistryGeneral MedicineCleavage (embryo)biology.organism_classificationSuberites domunculaEnzymeBiochemistrychemistryAspartic acidGeneral Materials ScienceJournal of Materials Chemistry B
researchProduct

The role of the silicatein-alpha interactor silintaphin-1 in biomimetic biomineralization.

2008

Biosilicification in sponges is initiated by formation of proteinaceous filaments, predominantly consisting of silicateins. Silicateins enzymatically catalyze condensation of silica nanospheres, resulting in symmetric skeletal elements (spicules). In order to create tailored biosilica structures in biomimetic approaches it is mandatory to elucidate proteins that are fundamental for the assembly of filaments. Silintaphin-1 is a core component of modularized filaments and also part of a spicule-enfolding layer. It bears no resemblance to other proteins, except for the presence of an interaction domain that is fundamental for its function as scaffold/template. In the presence of silicatein sil…

ScaffoldMaterials scienceDNA ComplementaryMolecular Sequence DataSilicic AcidBiophysicsNanoparticleBioengineeringNanotechnologyPlasma protein bindingFerric CompoundsAntibodiesBiomaterialsSponge spiculeCalcification PhysiologicBiomimetic MaterialsTwo-Hybrid System TechniquesAnimalsRegenerationInteractorAmino Acid SequencebiologyCore componentProteinsbiology.organism_classificationEnzymes ImmobilizedCathepsinsRecombinant ProteinsProtein TransportMechanics of MaterialsCeramics and CompositesSuberitesSuberitesBiomineralizationProtein BindingBiomaterials
researchProduct

Modular Small Diameter Vascular Grafts with Bioactive Functionalities.

2015

We report the fabrication of a novel type of artificial small diameter blood vessels, termed biomimetic tissue-engineered blood vessels (bTEBV), with a modular composition. They are composed of a hydrogel scaffold consisting of two negatively charged natural polymers, alginate and a modified chitosan, N,O-carboxymethyl chitosan (N,O-CMC). Into this biologically inert scaffold two biofunctionally active biopolymers are embedded, inorganic polyphosphate (polyP) and silica, as well as gelatin which exposes the cell recognition signal, Arg-Gly-Asp (RGD). These materials can be hardened by exposure to Ca(2+) through formation of Ca(2+) bridges between the polyanions, alginate, N,O-CMC, and polyP…

food.ingredientAlginateslcsh:MedicineBiocompatible Materialsmacromolecular substancesengineering.materialGelatinChitosanchemistry.chemical_compoundCalcium ChloridefoodTissue engineeringGlucuronic AcidBlood vessel prosthesisPolyphosphatesElastic ModulusTensile StrengthAbsorbable ImplantsMaterials TestingHuman Umbilical Vein Endothelial CellsHumanslcsh:ScienceBlood CoagulationCell Line Transformedchemistry.chemical_classificationChitosanMultidisciplinaryTissue EngineeringTissue ScaffoldsHexuronic Acidslcsh:Rtechnology industry and agricultureBiomaterialEndothelial CellsHydrogelsPolymerSilicon DioxideBlood Vessel ProsthesischemistrySelf-healing hydrogelsengineeringlcsh:QVascular GraftingBiopolymerOligopeptidesBiomedical engineeringResearch ArticlePloS one
researchProduct

Bacteria survival and growth in multi-layered silica thin films

2012

International audience; The fields of application of sol–gel encapsulation technology for living cells have been greatly extended over the last few years. Photobioreactors,1 biofuel cells,2 bio-remediation materials,3 biosensors4 and biomedical devices5 are currently being developed taking advantage of the robustness of inorganic materials compared to their (bio)-organic counterparts. In many of these applications, the formation of stable thin films (<1 μm) would be highly desirable for integration, for instance, in bio-chips.6 However, several limitations exist when trying to transfer a protocol mainly developed from bulk hydrogels to thin films. Especially, the storage stability becomes m…

Materials sciencebiologyNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologybiology.organism_classificationmedicine.disease_cause7. Clean energy01 natural sciences0104 chemical sciencesMaterials Chemistrymedicine[CHIM]Chemical SciencesThin film0210 nano-technologyEscherichia coliBacteriaJournal of Materials Chemistry
researchProduct

Silica-coated Au@ZnO Janus particles and their stability in epithelial cells

2020

Multicomponent particles have emerged in recent years as new compartmentalized colloids with two sides of different chemistry or polarity that have opened up a wide field of unique applications in medicine, biochemistry, optics, physics and chemistry. A drawback of particles containing a ZnO hemisphere is their low stability in biological environment due to the amphoteric properties of Zn2+. Therefore we have synthesized monodisperse Au@ZnO Janus particles by seed-mediated nucleation and growth whose ZnO domain was coated selectively with a thin SiO2 layer as a protection from the surrounding environment that imparts stability in aqueous media while the Au domain remained untouched. The thi…

chemistry.chemical_classificationMaterials scienceBiocompatibilityBiomoleculeDispersityBiomedical EngineeringNucleationNanotechnologyJanus particlesGeneral ChemistryGeneral MedicineColloidchemistryPhotocatalysisGeneral Materials ScienceLayer (electronics)Journal of Materials Chemistry B
researchProduct

Chemical Mimicry: Hierarchical 1D TiO2@ZrO2 Core−Shell Structures Reminiscent of Sponge Spicules by the Synergistic Effect of Silicatein-α and Silint…

2011

In nature, mineralization of hard tissues occurs due to the synergistic effect of components present in the organic matrix of these tissues, with templating and catalytic effects. In Suberites domuncula, a well-studied example of the class of demosponges, silica formation is mediated and templated by an axial proteinaceous filament with silicatein-α, one of the main components. But so far, the effect of other organic constituents from the proteinaceous filament on the catalytic effect of silicatein-α has not been studied in detail. Here we describe the synthesis of core-shell TiO(2)@SiO(2) and TiO(2)@ZrO(2) nanofibers via grafting of silicatein-α onto a TiO(2) nanowire backbone followed by …

NanowireGlutamic AcidNanotechnologyProtein filamentBiomimetic MaterialsMicroscopyElectrochemistryAnimalsGeneral Materials ScienceHigh-resolution transmission electron microscopySpectroscopyTitaniumbiologyNanowiresChemistryBiomaterialSurfaces and InterfacesEnzymes ImmobilizedCondensed Matter Physicsbiology.organism_classificationCathepsinsSuberites domunculaChemical engineeringTransmission electron microscopyNanofiberZirconiumSuberitesLangmuir
researchProduct

A novel TiO2-assisted magnetic nanoparticle separator for treatment and inactivation of bacterial contaminants in aquatic systems

2014

Ferromagnetic nanoparticles (Fe-nanoparticles) have been functionalized with recombinant poly- Glu [glutamic acid]-tagged silicatein, a biomineral-synthesizing enzyme from siliceous sponges that forms the inorganic silica skeleton of those animals. The biocatalytic activity of silicatein was used to form a titania (TiO2) shell around the iron nanoparticle core, using the water-soluble non- natural substrate titanium bis(ammonium lactato)-dihydroxide (TiBALDH). Thereby the diameter of the nanoparticles increases from 7 nm to ≈22 nm. This procedure also allows the layer-by-layer fabrication of titania/silica- Fe-nanoparticles. SEM/EDX analysis confirmed the presence of the Ti and Si signals i…

aquatic system; bacterial contaminants; magnetic nano-particles; TiOAqueous solutionFabricationMaterials scienceFerromagnetic material propertiesGeneral Chemical EngineeringInorganic chemistrySubstrate (chemistry)chemistry.chemical_elementNanoparticleGeneral ChemistrychemistryPhotocatalysisSeparator (electricity)TitaniumRSC Adv.
researchProduct

An approach to a biomimetic bone scaffold: increased expression of BMP-2 and of osteoprotegerin in SaOS-2 cells grown onto silica-biologized 3D print…

2012

Three-dimensional printed (3D printed) bone material is needed to close the shortage and to avoid the potential health risks associated with autografts and allografts, in the treatment of bone fractures/nonunions or bone trauma. Here we describe the fabrication of 3D printed scaffold, initially prepared form Ca-sulfate that has been impregnated/biologized with Ca-phosphate or with silica. The 3D printed grids had a size mesh of 200 μm; the chemical composition was determined by energy dispersive X-ray spectroscopy or conventional chemical analysis. Using human SaOS-2 cells (human osteogenic cells) it is shown that both the Ca-sulfate, and the Ca-phosphate or the silica impregnated Ca-sulfat…

musculoskeletal diseases0303 health sciencesScaffoldbiologyChemistryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyBone morphogenetic protein 2In vitro03 medical and health sciencesmedicine.anatomical_structureOsteoprotegerinOsteoclastIn vivoRANKLmedicinebiology.proteinBiophysics0210 nano-technologySaos-2 cells030304 developmental biologyRSC Adv.
researchProduct

A new printable and durable N,O-carboxymethyl chitosan–Ca2+–polyphosphate complex with morphogenetic activity

2015

Biomimetic materials have been gaining increasing importance in tissue engineering since they may provide regenerative alternatives to the use of autologous tissues for transplantation. In the present study, we applied for bioprinting of a functionalized three-dimensional template, N,O-carboxymethyl chitosan (N,O-CMC), mimicking the physiological extracellular matrix. This polymer, widely used in tissue engineering, has been provided with functional activity by integration of polyphosphate (polyP), an osteogenically acting natural polymer. The two polymers, N,O-CMC and polyP, are linked together via Ca2+ bridges. This N,O-CMC + polyP material was proven to be printable and durable. The N,O-…

ScaffoldMaterials sciencePolyphosphatetechnology industry and agricultureBiomedical Engineeringmacromolecular substancesGeneral ChemistryGeneral MedicineAnatomyTransplantationExtracellular matrixChitosanchemistry.chemical_compoundchemistryTissue engineeringBiophysicsGeneral Materials ScienceHybrid materialBiomineralizationJournal of Materials Chemistry B
researchProduct

Self‐Organized Arrays of SnO 2 Microplates with Photocatalytic and Antimicrobial Properties

2019

Inorganic ChemistryChemistryPhotocatalysisNanotechnologyAntimicrobialEuropean Journal of Inorganic Chemistry
researchProduct

Formation of a micropatterned titania photocatalyst by microcontact printed silicatein on gold surfaces

2012

The enzyme silicatein has been bioengineered to carry a thiol-bearing Au-affinity tag (Cys-tag) for direct immobilization on gold carriers in shortest time without the need for prior surface functionalization. Through microcontact printing, defined silicatein micropatterns were created on gold surfaces, facilitating the subsequent enzymatically controlled synthesis of photocatalytically active TiO(2).

TitaniumMaterials scienceSurface PropertiesUltraviolet RaysMetals and AlloysNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCathepsins01 natural sciencesRecombinant ProteinsCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMicrocontact printingMaterials ChemistryCeramics and CompositesPhotocatalysisSurface modificationGold0210 nano-technologyChemical Communications
researchProduct

Isolation of the silicatein-α interactor silintaphin-2 by a novel solid-phase pull-down assay.

2011

The skeleton of siliceous sponges consists of amorphous biogenous silica (biosilica). Biosilica formation is driven enzymatically by means of silicatein(s). During this unique process of enzymatic polycondensation, skeletal elements (spicules) that enfold a central proteinaceous structure (axial filament), mainly comprising silicatein, are formed. However, only the concerted action of silicatein and other proteins can explain the genetically controlled diversity of spicular morphotypes, from simple rods with pointed ends to intricate structures with up to six rays. With the scaffold protein silintaphin-1, a first silicatein interactor that facilitates the formation of the axial filament and…

Scaffold proteinSpiculeImmunoprecipitationMolecular Sequence DataNanotechnologyBiologyFlagellumBiochemistry03 medical and health sciencesSponge spiculePhase (matter)Two-Hybrid System TechniquesProtein Interaction MappingAnimalsInteractorAmino Acid Sequence030304 developmental biology0303 health sciences030302 biochemistry & molecular biologySilicon DioxideCathepsinsYeastProtein TransportSpectrometry Mass Matrix-Assisted Laser Desorption-IonizationBiophysicsAutoradiographyCalciumSuberitesProtein BindingBiochemistry
researchProduct

Haloperoxidase Mimicry by CeO2−xNanorods Combats Biofouling

2016

CeO2-x nanorods are functional mimics of natural haloperoxidases. They catalyze the oxidative bromination of phenol red to bromophenol blue and of natural signaling molecules involved in bacterial quorum sensing. Laboratory and field tests with paint formulations containing 2 wt% of CeO2-x nanorods show a reduction in biofouling comparable to Cu2 O, the most typical biocidal pigment.

Phenol redMechanical EngineeringBromophenol blue02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesBiofoulingchemistry.chemical_compoundQuorum sensingPigmentchemistryMechanics of MaterialsHaloperoxidasevisual_artvisual_art.visual_art_mediumEnzyme mimicGeneral Materials ScienceNanorod0210 nano-technologyAdvanced Materials
researchProduct