0000000000205131
AUTHOR
Jürgen Braun
Nanosession: Advanced Spectroscopy and Scattering
Specular reflection of spin-polarized electrons from the W(001) spin-filter crystal in a large range of scattering energies and angles
Extending previous work on the imaging spin-filter technique based on electron diffraction from W(001) in the specular (00)-LEED (low-energy electron diffraction) spot, we studied the scattering-energy and angle-of-incidence landscape of spin sensitivity $S$ and reflectivity ${I/I}_{0}$. The setup includes a spin-polarized GaAs electron source and a rotatable delay-line detector for spatially resolving detection. We measured the intensity and spin asymmetry of the specularly reflected beam for energies between 14 and 37 eV and angles of incidence between ${30}^{\ensuremath{\circ}}$ and ${60}^{\ensuremath{\circ}}$. Resulting energy-angular landscapes show rather good agreement with theory [r…
Spinovo rozlisena time-of-flight k-reozlisena fotoemissia Ir-- Kompletny fotoemissny experiment.
Ultramicroscopy 183, 19 - 29 (2017). doi:10.1016/j.ultramic.2017.06.025
Spin resolved photoemission study of Co(0001) films
Abstract Thin ferromagnetic films are of great practical interest as they can exhibit a different magnetic behaviour compared to the bulk crystals due to, e.g., the surface anisotropy. The electronic and magnetic properties of thin cobalt films evaporated on W(110) have been investigated by means of angle and spin resolving photoelectron spectroscopy. The study was focused on electron spin polarization, spin resolved intensities and band structure behaviour in dependence of film thickness, excitation energy, and photoelectron detection angle. In order to interpret the experimental results, we have performed relativistic band structure calculations for the Co(0001) surface. The observed agre…
Direct observation of half-metallicity in the Heusler compound $Co_{2}MnSi$
Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of () % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimen…
Rashba splitting of the Tamm surface state on Re(0001) observed by spin-resolved photoemission and scanning tunneling spectroscopy
Physical review research 2(1), 013296 (2020). doi:10.1103/PhysRevResearch.2.013296
Spin texture of time-reversal symmetry invariant surface states on W(110)
AbstractWe find in the case of W(110) previously overlooked anomalous surface states having their spin locked at right angle to their momentum using spin-resolved momentum microscopy. In addition to the well known Dirac-like surface state with Rashba spin texture near the "Equation missing"-point, we observe a tilted Dirac cone with circularly shaped cross section and a Dirac crossing at 0.28 × "Equation missing" "Equation missing" within the projected bulk band gap of tungsten. This state has eye-catching similarities to the spin-locked surface state of a topological insulator. The experiments are fortified by a one-step photoemission calculation in its density-matrix formulation.
Surface resonance of thin films of the Heusler half-metal Co2MnSi probed by soft x-ray angular resolved photoemission spectroscopy
Heusler compounds are promising materials for spintronics with adjustable electronic properties including 100% spin polarization at the Fermi energy. We investigate the electronic states of AlOx capped epitaxial thin films of the ferromagnetic half-metal Co2MnSi ex situ by soft x-ray angular resolved photoemission spectroscopy (SX-ARPES). Good agreement between the experimental SX-ARPES results and photoemission calculations including surface effects was obtained. In particular, we observed in line with our calculations a large photoemission intensity at the center of the Brillouin zone, which does not originate from bulk states, but from a surface resonance. This provides strong evidence f…
Probing bulk electronic structure with hard X-ray angle-resolved photoemission.
Traditional ultraviolet/soft X-ray angle-resolved photoemission spectroscopy (ARPES) may in some cases be too strongly influenced by surface effects to be a useful probe of bulk electronic structure. Going to hard X-ray photon energies and thus larger electron inelastic mean-free paths should provide a more accurate picture of bulk electronic structure. We present experimental data for hard X-ray ARPES (HARPES) at energies of 3.2 and 6.0 keV. The systems discussed are W, as a model transition-metal system to illustrate basic principles, and GaAs, as a technologically-relevant material to illustrate the potential broad applicability of this new technique. We have investigated the effects of …
Mapováni spinů povrchových a bulkových Rashba stavů v tenkých vrstvách feroelektrického α-GeTe(111)
Rozbíjení inverzní symetrie ve fereeleRashba efekt; Fotoemisse; DFTktrickém polovodiči způsobuje děleni stavů, tzv Rashba efekt. V tomto článku ukazujeme kompletně mapování spinové polarizace těchto Rashba stavů za pomoci spinovo rozlišené fotoemisse. The breaking of bulk inversion symmetry in ferroelectric semiconductors causes a Rashba-type spin splitting of electronic bulk bands. This is shown by a comprehensive mapping of the spin polarization of the electronic bands in ferroelectric α- GeTe(111) films using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10 000 data points. The experiment reveals an opposite…
Dirakův kužel a pseudogapped hustota stavů v topologické polovině Heuslerovy sloučeniny YPtBi
Topologické izolátory (Tis) jsou zajímavé materiály, které vykazují nebývalé vlastnosti. . Zde jsme prozkoumali sloučeniny YPtBi jako příklad ze třídy polovu-Heuslerových materiálů. Topological insulators (TIs) are exciting materials, which exhibit unprecedented properties, such as helical spinmomentum locking, which leads to large torques for magnetic switching and highly efficient spin current detection. Here we explore the compound YPtBi, an example from the class of half-Heusler materials, for which the typical band inversion of topological insulators was predicted. We prepared this material as thin films by conventional cosputtering from elementary targets. By in situ time-of-flight mo…
Surface resonance of thin films of the Heusler half-metal Co2MnSi probed by soft x-ray angular resolved photoemission spectroscopy
Heusler compounds are promising materials for spintronics with adjustable electronic properties including 100% spin polarization at the Fermi energy. We investigate the electronic states of ${\mathrm{AlO}}_{x}$ capped epitaxial thin films of the ferromagnetic half-metal ${\mathrm{Co}}_{2}\mathrm{MnSi}$ ex situ by soft x-ray angular resolved photoemission spectroscopy (SX-ARPES). Good agreement between the experimental SX-ARPES results and photoemission calculations including surface effects was obtained. In particular, we observed in line with our calculations a large photoemission intensity at the center of the Brillouin zone, which does not originate from bulk states, but from a surface r…
4D texture of circular dichroism in soft-x-ray photoemission from tungsten
Brief treatment and crisis intervention 21(1), 013017 (2019). doi:10.1088/1367-2630/aaf4cd
Anomalous d-like surface resonances on Mo(110) analyzed by time-of-flight momentum microscopy.
The electronic surface states on Mo(110) have been investigated using time-of-flight momentum microscopy with synchrotron radiation (hν=35 eV). This novel angle-resolved photoemission approach yields a simultaneous acquisition of the E-vs-k spectral function in the full surface Brillouin zone and several eV energy interval. (kx,ky,EB)-maps with 3.4 A(-1) diameter reveal a rich structure of d-like surface resonances in the spin-orbit induced partial band gap. Calculations using the one-step model in its density matrix formulation predict an anomalous state with Dirac-like signature and Rashba spin texture crossing the bandgap at Γ¯ and EB=1.2 eV. The experiment shows that the linear dispersi…
Detekcia vektora spinovej polarizácie vo viackanálovej spinovo rozlýšenej fotoemissie za použitia spinového filtra založeného na Ir(001)
Physical review / B 95(10), 104423 (2017). doi:10.1103/PhysRevB.95.104423
Spectroscopic evidence for a new type of surface resonance at noble metal surfaces
We investigated the surface and bulk properties of the pristine (110) surface of silver using threshold photoemission by excitation with light of 5.9 eV. Using a momentum microscope, we identified two distinct transitions along the $\overline{\mathrm{\ensuremath{\Gamma}}}\overline{\mathrm{Y}}$ direction of the crystal. The first one is a so far unknown surface resonance of the (110) noble-metal surface, exhibiting an exceptionally large bulk character that has so far been elusive in surface sensitive experiments. The second one stems from the well-known bulklike Mahan cone oriented along the $\mathrm{\ensuremath{\Gamma}}L$ direction inside the crystal but projected onto the (110)-surface cu…