0000000000214724

AUTHOR

Marcelino Martínez-sober

Validation of a Reinforcement Learning Policy for Dosage Optimization of Erythropoietin

This paper deals with the validation of a Reinforcement Learning (RL) policy for dosage optimization of Erythropoietin (EPO). This policy was obtained using data from patients in a haemodialysis program during the year 2005. The goal of this policy was to maintain patients' Haemoglobin (Hb) level between 11.5 g/dl and 12.5 g/dl. An individual management was needed, as each patient usually presents a different response to the treatment. RL provides an attractive and satisfactory solution, showing that a policy based on RL would be much more successful in achieving the goal of maintaining patients within the desired target of Hb than the policy followed by the hospital so far. In this work, t…

research product

A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time

[EN] This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely…

research product

Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques

HighlightsDifferent prediction algorithms were used to predict Hb levels in CRF patients.Prediction errors in the validation cohorts of patients were around 0.6g/dl.Difficulty to obtain lower errors due to the measuring machine precision (0.2g/dl).Relevance analysis of features have been applied for each predictor. Patients who suffer from chronic renal failure (CRF) tend to suffer from an associated anemia as well. Therefore, it is essential to know the hemoglobin (Hb) levels in these patients. The aim of this paper is to predict the hemoglobin (Hb) value using a database of European hemodialysis patients provided by Fresenius Medical Care (FMC) for improving the treatment of this kind of …

research product

Foetal ECG recovery using dynamic neural networks

Non-invasive electrocardiography has proven to be a very interesting method for obtaining information about the foetus state and thus to assure its well-being during pregnancy. One of the main applications in this field is foetal electrocardiogram (ECG) recovery by means of automatic methods. Evident problems found in the literature are the limited number of available registers, the lack of performance indicators, and the limited use of non-linear adaptive methods. In order to circumvent these problems, we first introduce the generation of synthetic registers and discuss the influence of different kinds of noise to the modelling. Second, a method which is based on numerical (correlation coe…

research product

Matlab-based interface for the simultaneous acquisition of force measures and Doppler ultrasound muscular images

This paper tackles the design of a graphical user interface (GUI) based on Matlab (MathWorks Inc., MA), a worldwide standard in the processing of biosignals, which allows the acquisition of muscular force signals and images from a ultrasound scanner simultaneously. Thus, it is possible to unify two key magnitudes for analyzing the evolution of muscular injuries: the force exerted by the muscle and section/length of the muscle when such force is exerted. This paper describes the modules developed to finally show its applicability with a case study to analyze the functioning capacity of the shoulder rotator cuff.

research product

Approaching sales forecasting using recurrent neural networks and transformers

Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution of the corresponding downstream processes (inbound and outbound planning, inventory placement, network planning, etc). We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques and the Corporaci\'on Favorita data set, published as part of a Kaggle competition. Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a training trick for making the model more time independent and…

research product

Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers

[EN] Green mold (Penicillium digitatum) and blue mold (Penicillium italicum) are important sources of postharvest decay affecting the commercialization of mandarins. These fungi infections produce enormous economic losses in mandarin production if early detection is not carried out. Nowadays, this detection is performed manually in dark chambers, where the fruit is illuminated by ultraviolet light to produce fluorescence, which is potentially dangerous for humans. This paper documents a new methodology based on hyperspectral imaging and advanced machine-learning techniques (artificial neural networks and classification and regression trees) for the segmentation and classification of images …

research product

Expert system for predicting unstable angina based on Bayesian networks

The use of computer-based clinical decision support (CDS) tools is growing significantly in recent years. These tools help reduce waiting lists, minimise patient risks and, at the same time, optimise the cost health resources. In this paper, we present a CDS application that predicts the probability of having unstable angina based on clinical data. Due to the characteristics of the variables (mostly binary) a Bayesian network model was chosen to support the system. Bayesian-network model was constructed using a population of 1164 patients, and subsequently was validated with a population of 103 patients. The validation results, with a negative predictive value (NPV) of 91%, demonstrate its …

research product

Modeling the Mechanical Behavior of the Breast Tissues Under Compression in Real Time

This work presents a data-driven model to simulate the mechanical behavior of the breast tissues in real time. The aim of this model is to speed up some multimodal registration algorithms, as well as some image-guided interventions. Ten virtual breast phantoms were used in this work. Their deformation during a mammography was performed off-line using the finite element method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict the deformation of the breast tissues. The models were a decision tree and two ensemble methods (extremely randomized trees and random forest). Four experiments were designed to assess the performance of th…

research product

Deep Learning Architectures for Diagnosis of Diabetic Retinopathy

For many years, convolutional neural networks dominated the field of computer vision, not least in the medical field, where problems such as image segmentation were addressed by such networks as the U-Net. The arrival of self-attention-based networks to the field of computer vision through ViTs seems to have changed the trend of using standard convolutions. Throughout this work, we apply different architectures such as U-Net, ViTs and ConvMixer, to compare their performance on a medical semantic segmentation problem. All the models have been trained from scratch on the DRIVE dataset and evaluated on their private counterparts to assess which of the models performed better in the segmentatio…

research product

Use of Reinforcement Learning in Two Real Applications

In this paper, we present two sucessful applications of Reinforcement Learning (RL) in real life. First, the optimization of anemia management in patients undergoing Chronic Renal Failure is presented. The aim is to individualize the treatment (Erythropoietin dosages) in order to stabilize patients within a targeted range of Hemoglobin (Hb). Results show that the use of RL increases the ratio of patients within the desired range of Hb. Thus, patients' quality of life is increased, and additionally, Health Care System reduces its expenses in anemia management. Second, RL is applied to modify a marketing campaign in order to maximize long-term profits. RL obtains an individualized policy depe…

research product

Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques

Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach.

research product

Application of Machine Learning Techniques in the Study of the Relevance of Environmental Factors in Prediction of Tropospheric Ozone

This work presents a new approach for one of the main problems in the analysis of atmospheric phenomena, the prediction of atmospheric concentrations of different elements. The proposed methodology is more efficient than other classical approaches and is used in this work to predict tropospheric ozone concentration. The relevance of this problem stems from the fact that excessive ozone concentrations may cause several problems related to public health. Previous research by the authors of this work has shown that the classical approach to this problem (linear models) does not achieve satisfactory results in tropospheric ozone concentration prediction. The authors’ approach is based on Machin…

research product

Self-Organising Maps: A new way to screen the level of satisfaction of dialysis patients

Highlights? FME as dialysis services global provider monitors patient satisfaction in its network. ? A specific questionnaire was developed and administered to the hemodialysis patients. ? To detect residual area of low satisfaction the Self-Organising Map was implemented. ? This method allows identifying niches of dissatisfaction for specific patient groups. Evaluation of patient satisfaction has become an important indicator for assessing health care quality. Fresenius Medical Care (FME) as a global provider of dialysis services through its NephroCare network has a strong interest in monitoring patient satisfaction.The aim of the paper is to test and validate a methodology for detecting a…

research product

Sectors on sectors (SonS): A new hierarchical clustering visualization tool

Clustering techniques have been widely applied to extract information from high-dimensional data structures in the last few years. Graphs are especially relevant for clustering, but many graphs associated with hierarchical clustering do not give any information about the values of the centroids' attributes and the relationships among them. In this paper, we propose a new visualization approach for hierarchical cluster analysis in which the above-mentioned information is available. The method is based on pie charts. The pie charts are divided into several pie segments or sectors corresponding to each cluster. The radius of each pie segment is proportional to the number of patterns included i…

research product

A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning

Progress in biomechanical modelling of human soft tissue is the basis for the development of new clinical applications capable of improving the diagnosis and treatment of some diseases (e.g. cancer), as well as the surgical planning and guidance of some interventions. The finite element method (FEM) is one of the most popular techniques used to predict the deformation of the human soft tissue due to its high accuracy. However, FEM has an associated high computational cost, which makes it difficult its integration in real-time computer-aided surgery systems. An alternative for simulating the mechanical behaviour of human organs in real time comes from the use of machine learning (ML) techniq…

research product

Analysis of the Pre and Post-COVID-19 Lockdown Use of Smartphone Apps in Spain

The global pandemic of COVID-19 has changed our daily habits and has undoubtedly affected our smartphone usage time. This paper attempts to characterize the changes in the time of use of smartphones and their applications between the pre-lockdown and post-lockdown periods in Spain, during the first COVID-19 confinement in 2020. This study analyzes data from 1940 participants, which was obtained both from a survey and from a tracking application installed on their smartphones. We propose manifold learning techniques such as clustering, to assess, both in a quantitative and in a qualitative way, the behavioral and social effects and implications of confinement in the Spanish population. We al…

research product

Machine Learning for Modeling the Biomechanical Behavior of Human Soft Tissue

An accurate modeling of the biomechanical properties of human soft tissue is crucial in many clinical applications, such as, radiotherapy administration or surgery. The finite element method (FEM) is the usual choice to carry out such modeling due to its high accuracy. However, FEM is computationally very costly, and hence, its application in real-time or even off-line with short delays are still challenges to overcome. This paper proposes a framework based on Machine Learning to learn FEM modeling, thus having a tool able to yield results that may be sufficiently fast for clinical applications. In particular, the use of ensembles of Decision Trees has shown its suitability in modeling the …

research product

Description and evaluation of an introductory course to Matlab for a heterogeneous group of university students

This paper presents the experience of the authors in teaching the Matlab™ software to students with different levels of academic training, even though all of them belong to the field of Science. Matlab™ is a worldwide standard in technical programming and computing, and its use is still growing; therefore, it is taught in many different university degree programs (Physics, Mathematics, Engineering, etc.). The course analyzed in this paper contains examples of different fields of knowledge to show the students the versatility and power of this tool. At the end of each course, which consists of 30 h, the students expressed their opinions about the content in a private opinion poll (questionna…

research product