6533b7d8fe1ef96bd12698a0
RESEARCH PRODUCT
Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques
Emanuele GattiAndrea StopperPablo Escandell-monteroJosé D. Martín-guerreroRafael Magdalena-beneditoClaudia AmatoEmilio Soria-olivasMarcelino Martínez-soberFlavio MariCarlo BarbieriJosé M. Martínez-martínezMarcello BassiAntonio Lópezsubject
AdultMaleAdolescentmedicine.medical_treatmentHealth InformaticsMachine learningcomputer.software_genreDisease clusterSensitivity and SpecificityHemoglobinsYoung AdultArtificial IntelligenceRenal DialysismedicineHumansComputer SimulationCluster analysisErythropoietinAgedAged 80 and overDose-Response Relationship DrugArtificial neural networkbusiness.industryModels CardiovascularLinear modelReproducibility of ResultsAnemiaMiddle AgedRegressionDrug Therapy Computer-AssistedComputer Science ApplicationsSupport vector machineTreatment OutcomeAdaptive resonance theoryFemaleHemodialysisArtificial intelligenceDrug MonitoringbusinesscomputerAlgorithmsBiomarkersSoftwaredescription
HighlightsDifferent prediction algorithms were used to predict Hb levels in CRF patients.Prediction errors in the validation cohorts of patients were around 0.6g/dl.Difficulty to obtain lower errors due to the measuring machine precision (0.2g/dl).Relevance analysis of features have been applied for each predictor. Patients who suffer from chronic renal failure (CRF) tend to suffer from an associated anemia as well. Therefore, it is essential to know the hemoglobin (Hb) levels in these patients. The aim of this paper is to predict the hemoglobin (Hb) value using a database of European hemodialysis patients provided by Fresenius Medical Care (FMC) for improving the treatment of this kind of patients. For the prediction of Hb, both analytical measurements and medication dosage of patients suffering from chronic renal failure (CRF) are used. Two kinds of models were trained, global and local models. In the case of local models, clustering techniques based on hierarchical approaches and the adaptive resonance theory (ART) were used as a first step, and then, a different predictor was used for each obtained cluster. Different global models have been applied to the dataset such as Linear Models, Artificial Neural Networks (ANNs), Support Vector Machines (SVM) and Regression Trees among others. Also a relevance analysis has been carried out for each predictor model, thus finding those features that are most relevant for the given prediction.
year | journal | country | edition | language |
---|---|---|---|---|
2013-12-02 | Computer Methods and Programs in Biomedicine |