0000000000218851

AUTHOR

Alberto Diaspro

0000-0002-4916-5928

showing 9 related works from this author

Fast Inertia-Free Volumetric Light-Sheet Microscope

2017

Fast noninvasive three-dimensional (3D) imag-ing is crucial for quantitatively studying highly dynamic events ranging from flow cytometry to developmental biology. Light-sheet microscopy has emerged as the tool-of-choice for 3D characterization of rapidly evolving systems. However, to obtain a 3D image, either the sample or parts of the microscope are moved, limiting the acquisition speed. Here, we propose a novel inertia-free light-sheet-based scheme for volumetric imaging at high temporal resolution. Our approach comprises a novel combination of an acousto-optic scanner to produce tailored illumination and an acoustic-optofluidic lens, placed in the detection path to provide extended dept…

0301 basic medicineScanneracouto-optic devicesMaterials scienceMicroscopethree-dimensional microscopy01 natural sciencesAcouto-optic devices flow cytometry light-sheet microscopy three-dimensional microscopy Electronic Optical and Magnetic Materials Biotechnology Atomic and Molecular Physics and Optics Electrical and Electronic Engineeringlaw.invention010309 optics03 medical and health sciencesOpticslawAtomic and Molecular Physics0103 physical sciencesMicroscopyElectronicOptical and Magnetic MaterialsElectrical and Electronic Engineeringbusiness.industryflow cytometryRangingFrame rateAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCharacterization (materials science)Lens (optics)acouto-optic devices; flow cytometry; light-sheet microscopy; three-dimensional microscopy; Electronic Optical and Magnetic Materials; Biotechnology; Atomic and Molecular Physics and Optics; Electrical and Electronic Engineering030104 developmental biologyLight sheet fluorescence microscopyand Opticsbusinesslight-sheet microscopyBiotechnologyACS Photonics
researchProduct

Light Sheet Fluorescence Microscopy (LSFM) for Two-Photon Excitation Imaging of Thick Samples.

2015

Over the last decades, fluorescence microscopy techniques have been developed in order to provide a deeper, faster and higher resolution imaging of three-dimensional biological samples. Within this framework, Light Sheet Fluorescence Microscopy (LSFM) became an increasingly useful and popular imaging technique able to answer several biological questions in the field of developmental biology [1]. Thanks to the spatial confinement of the excitation process within a thin sheet in the focal plane, it provides an intrinsic optical sectioning and a reduced phototoxicity. On the other side, Two-Photon Excitation (2PE), thanks to the use of IR wavelengths, has become an invaluable tool to improve i…

Point spread functionOptical sectioningbusiness.industryChemistryResolution (electron density)BiophysicsCardinal pointOpticsTwo-photon excitation microscopyLight sheet fluorescence microscopyMicroscopybusinessLight Sheet microscopyImage resolution
researchProduct

Laser-Fabricated Fluorescent, Ligand-Free Silicon Nanoparticles: Scale-up, Biosafety, and 3D Live Imaging of Zebrafish under Development

2022

This work rationalizes the scalable synthesis of ultrasmall, ligand-free silicon nanomaterials via liquid-phase pulsed laser ablation process using picosecond pulses at ultraviolet wavelengths. Results showed that the irradiation time drives hydrodynamic NP size. Isolated, monodisperse Si-NPs are obtained at high yield (72%) using post-treatment process. The obtained Si-NPs have an average size of 10 nm (not aggregated) and display photoemission in the green spectral range. We directly characterized the ligand-free Si-NPs in a vertebrate animal (zebrafish) and assessed their toxicity during the development. In vivo assay revealed that Si-NPs are found inside in all the early life stages of …

Materials scienceSiliconBiomedical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistrymedicine.disease_cause01 natural sciencessemiconductors biocompatible materials imaging agents quantum dots nanofabrication laser ablation in liquid biological materials toxicology translocation blood barrier biological imaging fluorecence imaging optical materialslaw.inventionNanomaterialsBiomaterialslawmedicinebusiness.industryBiochemistry (medical)General Chemistry021001 nanoscience & nanotechnologyLaserFluorescence0104 chemical sciencesNanolithographychemistryPicosecondOptoelectronics0210 nano-technologybusinessBiological imagingUltravioletACS Applied Bio Materials
researchProduct

Three-dimensional multiple-particle tracking with nanometric precision over tunable axial ranges

2017

The precise localization of nanometric objects in three dimensions is essential to identify functional diffusion mechanisms in complex systems at the cellular or molecular level. However, most optical methods can achieve high temporal resolution and high localization precision only in two dimensions or over a limited axial (z) range. Here we develop a novel wide-field detection system based on an electrically tunable lens that can track multiple individual nanoscale emitters in three dimensions over a tunable axial range with nanometric localization precision. The optical principle of the technique is based on the simultaneous acquisition of two images with an extended depth of field while …

0301 basic medicineOptical devicesMaterials scienceComplex system02 engineering and technologyTracking (particle physics)Deformable mirrorlaw.invention03 medical and health sciencesOpticsPosition (vector)lawAtomic and Molecular PhysicsElectronicImaging systemsDepth of fieldOptical and Magnetic MaterialsFluorescence microscopy; Imaging systems; Microscopy; Optical devices; Three-dimensional image processing; Electronic; Optical and Magnetic Materials; Atomic and Molecular Physics; and OpticsFluorescence microscopyMicroscopybusiness.industryThree-dimensional image processingFluorescence microscopy; Imaging systems; Microscopy; Optical devices; Three-dimensional image processing; Electronic Optical and Magnetic Materials; Atomic and Molecular Physics and Optics021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNumerical apertureLens (optics)030104 developmental biologyTemporal resolutionand Optics0210 nano-technologybusinessFluorescence microscopy Imaging systems Microscopy Optical devices Three-dimensional image processing Electronic Optical and Magnetic Materials Atomic and Molecular Physics and Optics
researchProduct

Microscopy method and apparatus for optical tracking of emitter objects

2017

Microscopy method and apparatus for determining the posi tions of emitter objects in a three - dimensional space that comprises focusing scattered light or fluorescent light emitted by an emitter object, separating the focused beam in a first and a second optical beam, directing the first and the second optical beam through a varifocal lens having an optical axis such that the first optical beam impinges on the lens along the optical axis and the second beam impinges decentralized with respect to the optical axis of the varifocal lens , simultaneously capturing a first image created by the first optical beam and a second image created by the second optical beam , and determining the relativ…

particle tracking
researchProduct

4D (x-y-z-t) imaging of thick biological samples by means of Two-Photon inverted Selective Plane Illumination Microscopy (2PE-iSPIM)

2015

AbstractIn the last decade light sheet fluorescence microscopy techniques, such as selective plane illumination microscopy (SPIM), has become a well established method for developmental biology. However, conventional SPIM architectures hardly permit imaging of certain tissues since the common sample mounting procedure, based on gel embedding, could interfere with the sample morphology. In this work we propose an inverted selective plane microscopy system (iSPIM), based on non-linear excitation, suitable for 3D tissue imaging. First, the iSPIM architecture provides flexibility on the sample mounting, getting rid of the gel-based mounting typical of conventional SPIM, permitting 3D imaging of…

0301 basic medicineMultidisciplinaryMaterials sciencePhotonImage qualitybusiness.industryScatteringBright-field microscopy01 natural sciencesArticle010309 optics03 medical and health sciences030104 developmental biologyOpticsTwo-photon excitation microscopyLight sheet fluorescence microscopy0103 physical sciencesMicroscopybusinessSelective Plane Illumination MicroscopyExcitation
researchProduct

Biocompatibility and biodistribution of functionalized carbon nano-onions (f-CNOs) in a vertebrate model

2016

AbstractFunctionalized carbon nano-onions (f-CNOs) are of great interest as platforms for imaging, diagnostic and therapeutic applications due to their high cellular uptake and low cytotoxicity. To date, the toxicological effects of f-CNOs on vertebrates have not been reported. In this study, the possible biological impact of f-CNOs on zebrafish during development is investigated, evaluating different toxicity end-points such as the survival rate, hatching rate, and heart beat rate. Furthermore, a bio-distribution study of boron dipyrromethene (BODIPY) functionalized CNOs in zebrafish larvae is performed by utilizing inverted selective plane illumination microscopy (iSPIM), due to its intri…

Biodistributionanimal structuresMultidisciplinarybiologyBiocompatibilityChemistryfungi02 engineering and technologyAnatomy010402 general chemistry021001 nanoscience & nanotechnologybiology.organism_classification01 natural sciencesArticle0104 chemical scienceschemistry.chemical_compoundIn vivoNano-ToxicityBiophysicsBODIPY0210 nano-technologyCytotoxicityZebrafish
researchProduct

Influence of Nanoparticle Exposure on Nervous System Development in Zebrafish Studied by Means of Light Sheet Fluorescence Microscopy

2016

Zebrafish has a remarkable similarity in the molecular signaling processes, cellular structure, anatomy and physiology to other higher order vertebrates, making it an excellent vertebrate model organism (1). Recently, zebrafish has been used for neurotoxicity screening of numerous nanomaterials with a focus on the developmental effects due to the possibility of in vivo visualization of specific neurons and axon tracts by injecting dyes in live animals as well in fixed ones (2). Here we propose Light Sheet Fluorescence Microscopy (LSFM) (3) (4) to perform neurotoxicity studies, in order to study the nervous system architecture and to image 3D structures in the brain of live larvae during the…

light sheet microscopy0301 basic medicineNervous systemved/biologyved/biology.organism_classification_rank.speciesBiophysicsNeurotoxicityNanoparticleAnatomyBiologybiology.organism_classificationmedicine.disease03 medical and health sciences030104 developmental biologymedicine.anatomical_structureIn vivoLight sheet fluorescence microscopymedicineBiophysicsAxonModel organismZebrafishBiophysical Journal
researchProduct

A Novel Fast Volumetric Light Sheet Microscopy

2016

Fast noninvasive three-dimensional (3D) imaging is crucial for the quantitative understanding of highly dynamic biological processes. Over the last decades, several fluorescence microscopy techniques have been developed in order to provide a faster and deeper imaging of thick biological samples [1]. Within this framework, Light Sheet Fluorescence Microscopy (LSFM) has emerged as a powerful imaging tool for 3D imaging of thick samples ranging from single cells to entire animals [2,3].However, to obtain a 3D reconstruction either sample or microscope parts usually need to be moved limiting the acquisition speed and inducing possible interferences in volume recording. To solve this problem, he…

light sheet microscopyMicroscopeMaterials scienceImage qualitybusiness.industry3D reconstructionBiophysicsFrame ratelaw.inventionOpticslawLight sheet fluorescence microscopyTemporal resolutionMicroscopyDeconvolutionbusinessBiophysical Journal
researchProduct