0000000000223526

AUTHOR

Daniel Robert

H-2 vibrational spectral signatures in binary and ternary mixtures: theoretical model, simulation and application to CARS thermometry in high pressure flames

International audience; A summary of the main results obtained by the two groups in the field of H-2 vibrational spectral line signatures for various mixtures. in connection with CARS diagnostics of H-2-O-2 combustion systems, is presented. H-2-X Systems may have specific large inhomogeneous spectral features, due to the dependence of the line broadening and line shifting on the (H-2) radiator speed, particularly at high temperature. Thus, careful attention has to be paid to rigorously analyze such features, both from the experimental point of view (Dijon) and from the theoretical one (Besancon). Applications of the present results to high-pressure H-2/air flame thermometry are also briefly…

research product

Rotational collisional line broadening at high temperatures in the N2 fundamental Q-branch studied with stimulated Raman spectroscopy

Self broadened N 2 Q-branch spectra are measured by high resolution stimulated Raman spectroscopy in the pressure region 0.25-1.9 atm. and in the temperature range 295-1310 K. Non additivity of the Q(J) components due to line overlap arising in the highest pressure range explored is carefully taken into account. Excellent fit of the whole spectra is thus obtained for each pressure with linearly density-dependent line widths. Semi-classical calculations of the line-broadening coefficients lead to consistent values with all the measured ones. These calculations are extended to higher J values and to higher temperatures (up to 2500 K). At last, a simple phenomenological model based on a polyno…

research product

A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman-Scattering Spectra - Application to the Srs-N2 Q-Branch

Abstract A model for the calculation of collisionally narrowed isotropic. Raman scattering spectra is proposed. In this model, the rotational transition probabilities are calculated within the strong collision approximation, allowing the rotational energy transfer rates to be expressed in terms of the sole individual Q( J ) line broadening coefficients. These transfer rates satisfy both detailed balance principle and unitarity of the scattering matrix in contrast with most of the previous approaches. Under further approximation concerning the rotational distribution of the collisional frequency, simpler expressions for transfer rates are deduced, which do not satisfy necessarily both unitar…

research product

A POWERFUL TOOL TO STUDY COLLISIONAL PHENOMENA AND FOR COMBUSTION APPLICATIONS : THE HIGH RESOLUTION STIMULATED RAMAN SPECTROSCOPY

research product

Speed-dependent line profile: A test of a unified model from the Doppler to the collisional regime for molecule-molecule collisions

International audience; A speed-dependent line profile combining soft and hard fully correlated Dicke-narrowing collisions was recently successfully tested on Ar-broadened H-2 spectra in a wide density and temperature range. A further test for mixtures of H-2 in nitrogen molecules (instead of Ar atoms) is presented. This test is also based on high resolution Raman investigation of the isotropic Q(1) line of H-2 from low to high density at various temperatures. The same consistency of the speed-dependent line profile as for H-2-Ar is obtained for H-2-N-2 through a remarkable agreement with all the data by using a unique set of four parameters (the collisional width and shift, the kinetic fre…

research product