0000000000240141
AUTHOR
Antti Nuottajärvi
Plasma Etching and Integration with Nanoprocessing
This chapter introduces plasma etching—an extensive and perhaps the most widely used micro- and nanoprocessing method both in industry and in research and development laboratories worldwide. The emphasis is on the practical methods in plasma etching and reactive ion etching when used for submicron and nanoscale device fabrication. The principles of plasma etching and reactive ion etching equipment for sample fabrication will be introduced.
Operation of transition-edge sensors with excess thermal noise
The superconducting transition-edge sensor (TES) is currently one of the most attractive choices for ultra-high resolution calorimetry in the keV x-ray band, and is being considered for future ESA and NASA missions. We have performed a study on the noise characteristics of Au/Ti bilayer TESs, at operating temperatures around ~100 mK, with the SQUID readout at 1.5 K. Experimental results indicate that without modifications the back-action noise from the SQUID chip degrades the noise characteristics significantly. We present a simple and effective solution to the problem: by installing an extra shunt resistor which absorbs the excess radiation from the SQUID input, we have reduced the excess …
Nano-graphite cold cathodes for electric solar wind sail
The nanographite (NG) films consisting of tiny graphite crystallites (nanowalls) are produced by carbon condensation from methane–hydrogen gas mixture activated by a direct current discharge. High aspect ratio and structural features of the NG crystallites provides efficient field electron emission (FE). Applicability and performance of the NG films in an electron gun (E-gun) of a solar wind thruster system with an electric sail (E-sail) is tested. The long-term tests are demonstrated suitability of E-gun assembly with the NG cathodes for the real space missions. The results of the tests are analyzed and physical mechanisms of the cathode aging and practical methods for improvement performa…
Transition-edge microcalorimeters for X-ray space applications
Abstract In an European Space Agency funded research project, our goal is to develop microbolometer technology for X-ray and far-infrared detection for ESA's future scientific missions. We report results on the X-ray calorimeter, which is based on the superconducting transition of the Ti/Au thermometer strip at about 200 mK. Incident X-rays heat up a Bi absorber, deposited on top of the 400 μm ×400 μm thermometer. The temperature rise of the absorber is measured as a change of the thermometer current with a SQUID operating at 1 K.
Fluctuation-Limited Noise in a Superconducting Transition-Edge Sensor
In order to investigate the origin of the until now unaccounted excess noise and to minimize the uncontrollable phenomena at the transition in x-ray microcalorimeters we have developed superconducting transition-edge sensors into an edgeless geometry, the so-called Corbino disk, with superconducting contacts in the center and at the outer perimeter. The measured rms current noise and its spectral density can be modeled as resistance noise resulting from fluctuations near the equilibrium superconductor-normal metal boundary. Peer reviewed
E-sail test payload of the ESTCube-1 nanosatellite
The scientific mission of ESTCube-1, launched in May 2013, is to measure the electric solar wind sail (E-sail) force in orbit. The experiment is planned to push forward the development of the E-sail, a propulsion method recently invented at the Finnish Meteorological Institute. The E-sail is based on extracting momentum from the solar wind plasma flow by using long thin electrically charged tethers. ESTCube-1 is equipped with one such tether, together with hardware capable of deploying and charging it. At the orbital altitude of ESTCube-1 (660–680 km) there is no solar wind present. Instead, ESTCube-1 shall observe the interaction between the charged tether and the ionospheric plasma. The E…
Sub-kelvin current amplifier using DC-SQUID
Abstract We have set up a system where a low-noise DC-SQUID is used as a current amplifier. The SQUID output is read using a wide band electronics unit based on the noise cancellation scheme. The SQUID has been installed in a compact Nanoway PDR50 dilution refrigerator, and superconducting transitions of Ti/Au thermometer strips for X-ray calorimeter applications have been measured. We can operate at 100 mK using a SQUID with Pd shunt resistors. Noise and bandwidth results of the setup are presented.