SiC Power Switches Evaluation for Space Applications Requirements
We have evaluated several SiC power switches available on the market, by defining and performing a global test campaign oriented to Space applications requirements, in order to define their main benefits but also the limits of current SiC technology. This allowed to identify a number of target applications where SiC could be used as a technology push for a new generation of space electronics units. Silicon devices qualified for space systems above 600V for the switches and 1200V for the rectifiers are not available due to performances limitations of Si. Among the typical static and dynamic characterization, we have performed temperature and power stress and HTRB tests. More remarkably, we h…
Assessing Radiation Hardness of SIC MOS Structures
It is widely known that devices based on wide gap semiconductors show potential benefits in terms of saving mass, increasing power densities compared with standard Silicon ones [1]. The higher operating temperatures these components can withstand can also reduce the power budget currently used for cooling down power electronics. These factors are critical in space applications where, for example SiC devices are very promising. However, in this field reliability is a paramount requirement, and radiation conditions can compromise the usage of these new technologies.
300°C SiC Blocking Diodes for Solar Array Strings
Silicon Carbide 300V-5A Ni and W Schottky diodes with high temperature operation capability (up to 300°C) have been fabricated. This paper reports on the stability tests (ESA space mission to Mercury, BepiColombo requirements) performed on these diodes. A DC current stress of 5A has been applied to these diodes at 270°C for 800 hours. These reliability tests revealed both, degradation at the Schottky interface (forward voltage drift) and at the diode top surface due to Aluminum diffusion (bond pull strength degradation). The use of W as Schottky metal allows eliminating the forward voltage drift producing stable metal–semiconductor interface properties. Nevertheless, SEM observations of the…