0000000000243792
AUTHOR
Zaida Abad-jiménez
Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfunction in human obesity
Abstract Objective In obese patients undergoing caloric restriction, there are several potential mechanisms involved in the improvement of metabolic outcomes. The present study further explores whether caloric restriction can modulate endoplasmic reticulum (ER) stress and mitochondrial function, as both are known to be mechanisms underlying inflammation and insulin resistance (IR) during obesity. Methods A total of 64 obese patients with BMI ≥35 kg/m2 underwent a dietary program consisting of 6 weeks of a very-low-calorie diet followed by 18 weeks of low-calorie diet. We evaluated changes in the metabolic and inflammatory markers -TNFα, hsCRP, complement component 3 (C3c), and retinol bindi…
Effect of Roux-en-Y Bariatric Bypass Surgery on Subclinical Atherosclerosis and Oxidative Stress Markers in Leukocytes of Obese Patients: A One-Year Follow-Up Study
Little is known about the mechanisms underlying the cardioprotective effect of Roux en-Y gastric bypass (RYGB) surgery. Therefore, the aim of the present study was to investigate whether weight loss associated with RYGB improves the oxidative status of leukocytes and ameliorates subclinical atherosclerotic markers. This is an interventional study of 57 obese subjects who underwent RYGB surgery. We determined biochemical parameters and qualitative analysis of cholesterol, leukocyte and systemic oxidative stress markers &mdash
Characterization of Differentially Expressed Circulating miRNAs in Metabolically Healthy versus Unhealthy Obesity
Obese individuals without metabolic comorbidities are categorized as metabolically healthy obese (MHO). MicroRNAs (miRNAs) may be implicated in MHO. This cross-sectional study explores the link between circulating miRNAs and the main components of metabolic syndrome (MetS) in the context of obesity. We also examine oxidative stress biomarkers in MHO vs. metabolically unhealthy obesity (MUO). We analysed 3536 serum miRNAs in 20 middle-aged obese individuals: 10 MHO and 10 MUO. A total of 159 miRNAs were differentially expressed, of which, 72 miRNAs (45.2%) were higher and 87 miRNAs (54.7%) were lower in the MUO group. In addition, miRNAs related to insulin signalling and lipid metabolism pat…
Mitochondrial Alterations and Enhanced Human Leukocyte/Endothelial Cell Interactions in Type 1 Diabetes
Type 1 diabetes has been associated with oxidative stress. This study evaluates the rates of oxidative stress, mitochondrial function, leukocyte&ndash
Microbiota-Mitochondria Inter-Talk: A Potential Therapeutic Strategy in Obesity and Type 2 Diabetes
The rising prevalence of obesity and type 2 diabetes (T2D) is a growing concern worldwide. New discoveries in the field of metagenomics and clinical research have revealed that the gut microbiota plays a key role in these metabolic disorders. The mechanisms regulating microbiota composition are multifactorial and include resistance to stress, presence of pathogens, diet, cultural habits and general health conditions. Recent evidence has shed light on the influence of microbiota quality and diversity on mitochondrial functions. Of note, the gut microbiota has been shown to regulate crucial transcription factors, coactivators, as well as enzymes implicated in mitochondrial biogenesis and meta…
Association between Proinflammatory Markers, Leukocyte–Endothelium Interactions, and Carotid Intima–Media Thickness in Type 2 Diabetes: Role of Glycemic Control
Glycated hemoglobin monitorization could be a tool for maintaining type 2 diabetes (T2D) under control and delaying the appearance of cardiovascular events. This cross-sectional study was designed to assess the role of glycemic control in modulating early-stage markers of cardiovascular complications. One hundred and eight healthy controls and 161 type 2 diabetic patients were recruited and distributed according to their glycemic control, setting the threshold at 6.5% (good control). Biochemical and anthropometrical parameters were registered during the initial visit, and peripheral blood was extracted to obtain polymorphonuclear cells and analyze inflammatory markers, adhesion molecules, l…
Relationship Between Oxidative Stress, ER Stress, and Inflammation in Type 2 Diabetes: The Battle Continues
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia and insulin resistance in which oxidative stress is thought to be a primary cause. Considering that mitochondria are the main source of ROS, we have set out to provide a general overview on how oxidative stress is generated and related to T2D. Enhanced generation of reactive oxygen species (ROS) and oxidative stress occurs in mitochondria as a consequence of an overload of glucose and oxidative phosphorylation. Endoplasmic reticulum (ER) stress plays an important role in oxidative stress, as it is also a source of ROS. The tight interconnection between both organelles through mitochondrial-associated membranes (MAM…
Systemic Oxidative Stress and Visceral Adipose Tissue Mediators of NLRP3 Inflammasome and Autophagy Are Reduced in Obese Type 2 Diabetic Patients Treated with Metformin.
Obesity is a low-grade inflammatory condition affecting a range of individuals, from metabolically healthy obese (MHO) subjects to type 2 diabetes (T2D) patients. Metformin has been shown to display anti-inflammatory properties, though the underlying molecular mechanisms are unclear. To study whether the effects of metformin are mediated by changes in the inflammasome complex and autophagy in visceral adipose tissue (VAT) of obese patients, a biopsy of VAT was obtained from a total of 68 obese patients undergoing gastric bypass surgery. The patients were clustered into two groups: MHO patients and T2D patients treated with metformin. Patients treated with metformin showed decreased levels o…
The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes
Mitochondrial dysfunction has been shown to play a central role in the pathophysiology of type 2 diabetes (T2D), and mitochondria-targeted agents such as SS-31 are emerging as a promising strategy for its treatment. We aimed to study the effects of SS-31 on leukocytes from T2D patients by evaluating oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Sixty-one T2D patients and 53 controls were included. Anthropometric and analytical measurements were performed. We also assessed reactive oxygen species (ROS) production, calcium content, the expression of ER stress markers GRP78, CHOP, P-eIF2&alpha
Relationship between PMN-endothelium interactions, ROS production and Beclin-1 in type 2 diabetes.
Type 2 diabetes is closely related to oxidative stress and cardiovascular diseases. In this study, we hypothesized that polymorphonuclear leukocytes (PMN)-endothelium interactions and autophagy are associated. We evaluated PMN-endothelial interactions, ROS production and autophagy parameters in 47 type 2 diabetic patients and 57 control subjects. PMNs from type 2 diabetic patients exhibited slower rolling velocity (p < 0.001), higher rolling flux (p < 0.001) and adhesion (p < 0.001) in parallel to higher levels of total (p < 0.05) and mitochondrial ROS (p < 0.05). When the protein expression of autophagy markers was analysed, an increase of Beclin-1 (p < 0.05), LC3I (p < 0.05), LC3II (p < 0…
The SGLT2 Inhibitor Empagliflozin Ameliorates the Inflammatory Profile in Type 2 Diabetic Patients and Promotes an Antioxidant Response in Leukocytes
Sodium&ndash
Does Metformin Modulate Mitochondrial Dynamics and Function in Type 2 Diabetic Patients?
Metformin is an effective drug against type 2 diabetes (T2D), a pathogenesis in which mitochondrial dysfunction is one of the main players. Thus, our first aim was to describe the effect of metform...
The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes
AbstractThere is growing focus on mitochondrial impairment and cardiovascular diseases (CVD) in type 2 diabetes (T2D), and the development of novel therapeutic strategies in this context. It is unknown whether mitochondrial-targeting antioxidants such as SS-31 protect sufficiently against oxidative damage in diabetes. We aimed to evaluate if SS-31 modulates SIRT1 levels and ameliorates leukocyte-endothelium interactions, oxidative stress and inflammation in T2D patients. Anthropometric and metabolic parameters were studied in 51 T2D patients and 57 controls. Production of mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential, glutathione content, leukocyte-endotheliu…
Effect of Non-Surgical Periodontal Treatment on Oxidative Stress Markers in Leukocytes and Their Interaction with the Endothelium in Obese Subjects with Periodontitis: A Pilot Study
Aim: The primary objective of this pilot study was to evaluate the effect of non-surgical periodontal treatment. The secondary aim was to evaluate the effect of dietary therapy on both parameters of oxidative stress in leukocytes and leukocyte-endothelial cell interactions in an obese population. Methods: This was a pilot study with a before-and-after design. Forty-nine obese subjects with periodontitis were randomized by means of the minimization method and assigned to one of two groups, one of which underwent dietary therapy while the other did not. All the subjects underwent non-surgical periodontal treatment. We determined periodontal, inflammatory and oxidative stress parameters&mdash