Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis
ObjectivePrimary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications.DesignWe collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients—obtained using the Illumina immunochip—with their disease subphenotypes. Using logistic regression and Cox proportiona…
Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis
To access publisher's full text version of this article click on the hyperlink at the bottom of the page Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci sh…
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have ena…
Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci
Background & Aims: A limited number of genetic risk factors have been reported in primary sclerosing cholangitis (PSC). To discover further genetic susceptibility factors for PSC, we followed up on,a second tier of single nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS). Methods: We analyzed 45 SNPs in 1221 PSC cases and 3508 controls. The association results from the replication analysis and the original GWAS (715 PSC cases and 2962 controls) were combined in a meta-analysis comprising 1936 PSC cases and 6470 controls. We performed an analysis of bile microbial community composition in 39 PSC patients by 16S rRNA sequencing. Results: Seventeen SNPs representing 1…
Parallelizing Epistasis Detection in GWAS on FPGA and GPU-Accelerated Computing Systems
This is a post-peer-review, pre-copyedit version of an article published in IEEE - ACM Transactions on Computational Biology and Bioinformatics. The final authenticated version is available online at: http://dx.doi.org/10.1109/TCBB.2015.2389958 [Abstract] High-throughput genotyping technologies (such as SNP-arrays) allow the rapid collection of up to a few million genetic markers of an individual. Detecting epistasis (based on 2-SNP interactions) in Genome-Wide Association Studies is an important but time consuming operation since statistical computations have to be performed for each pair of measured markers. Computational methods to detect epistasis therefore suffer from prohibitively lon…
FPGA-based Acceleration of Detecting Statistical Epistasis in GWAS
Abstract Genotype-by-genotype interactions (epistasis) are believed to be a significant source of unexplained genetic variation causing complex chronic diseases but have been ignored in genome-wide association studies (GWAS) due to the computational burden of analysis. In this work we show how to benefit from FPGA technology for highly parallel creation of contingency tables in a systolic chain with a subsequent statistical test. We present the implementation for the FPGA-based hardware platform RIVYERA S6-LX150 containing 128 Xilinx Spartan6-LX150 FPGAs. For performance evaluation we compare against the method iLOCi[9]. iLOCi claims to outperform other available tools in terms of accuracy.…
Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation o…
Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci
Primary sclerosing cholangitis (PSC) is a chronic bile duct disease affecting 2.4-7.5% of individuals with inflammatory bowel disease. We performed a genome-wide association analysis of 2,466,182 SNPs in 715 individuals with PSC and 2,962 controls, followed by replication in 1,025 PSC cases and 2,174 controls. We detected non-HLA associations at rs3197999 in MST1 and rs6720394 near BCL2L11 (combined P = 1.1 x 10(-16) and P = 4.1 x 10(-8), respectively).
New loci associated with kidney function and chronic kidney disease
Chronic kidney disease (CKD) is a significant public health problem, and recent genetic studies have identified common CKD susceptibility variants. The CKDGen consortium performed a meta-analysis of genome-wide association data in 67,093 individuals of European ancestry from 20 predominantly population-based studies in order to identify new susceptibility loci for reduced renal function as estimated by serum creatinine (eGFRcrea), serum cystatin c (eGFRcys) and CKD (eGFRcrea 60 ml/min/1.73 m 2; n = 5,807 individuals with CKD (cases)). Follow-up of the 23 new genome-wide-significant loci (P 5 × 10 8) in 22,982 replication samples identified 13 new loci affecting renal function and CKD (in or…
Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 x 10(-8)). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with gen…