0000000000252760

AUTHOR

Ferdinand C. Grozema

0000-0002-4375-799x

showing 3 related works from this author

Potential and limitations of CsBi3I10 as a photovoltaic material

2020

Herein we demonstrate the dry synthesis of CsBi3I10 both as a free-standing material and in the form of homogeneous thin films, deposited by thermal vacuum deposition. Chemical and optical characterization shows high thermal stability, phase purity, and photoluminescence centered at 700 nm, corresponding to a bandgap of 1.77 eV. These characteristics make CsBi3I10 a promising low-toxicity material for wide bandgap photovoltaics. Nevertheless, the performance of this material as a semiconductor in solar cells remains rather limited, which can be at least partially ascribed to a low charge carrier mobility, as determined from pulsed-radiolysis time-resolved microwave conductivity. Further dev…

PhotoluminescenceMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryBand gapDoping02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesSemiconductorVacuum depositionPhotovoltaicsOptoelectronicsGeneral Materials ScienceThermal stabilityThin film0210 nano-technologybusinessMaterials
researchProduct

Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical and Electrical Properties

2019

Phase‐pure CsSnI3, FASnI3, Cs(PbSn)I3, FA(PbSn)I3 perovskites (FA = formamidinium = HC(NH2)2+) as well as the analogous so‐called vacancy‐ordered double perovskites Cs2SnI6 and FA2SnI6 are mechanochemically synthesized. The addition of SnF2 is found to be crucial for the synthesis of Cs‐containing perovskites but unnecessary for hybrid ones. All compounds show an absorption onset in the near‐infrared (NIR) region, which makes them especially relevant for photovoltaic applications. The addition of Pb(II) and SnF2 is crucial to improve the electronic properties in 3D Sn(II)‐based perovskites, in particular their charge carriers mobility (≈0.2 cm2 Vs−1) which is enhanced upon reduction of the …

Materials scienceChemical substanceIodideperovskitesSolid-statechemistry.chemical_element02 engineering and technologylow-bandgap010402 general chemistry7. Clean energy01 natural sciencessolid-statelow-bandgap mechanochemistry perovskites solid-state tintinMechanochemistryThermalMaterialschemistry.chemical_classificationThesaurus (information retrieval)021001 nanoscience & nanotechnology0104 chemical sciencesGeneral EnergychemistryChemical engineeringEnergiamechanochemistry0210 nano-technologyTinScience technology and society
researchProduct

Perovskite Solar Cells: Stable under Space Conditions

2020

Metal halide perovskite solar cells (PSCs) are of interest for high altitude and space applications due to their lightweight and versatile form factor. However, their resilience toward the particle spectrum encountered in space is still of concern. For space cells, the effect of these particles is condensed into an equivalent 1 MeV electron fluence. The effect of high doses of 1 MeV e-beam radiation up to an accumulated fluence to 10^16 e-cm-2 on methylammonium lead iodide perovskite thin films and solar cells is probed. By using substrate and encapsulation materials that are stable under the high energy e-beam radiation, its net effect on the perovskite film and solar cells can be studied.…

Espai exteriorMaterials scienceCondensed matter physicsEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologySpace (mathematics)01 natural sciences7. Clean energyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materials13. Climate actionElectrical and Electronic Engineering0210 nano-technologyCèl·lules fotoelèctriquesPerovskite (structure)Solar RRL
researchProduct